【題目】已知函數(shù)fx)=2cos2x+ax2

1)當(dāng)a1時(shí),求fx)的導(dǎo)函數(shù)上的零點(diǎn)個(gè)數(shù);

2)若關(guān)于x的不等式2cos2sinx+a2x2afx)在(﹣,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

【答案】1)零點(diǎn)個(gè)數(shù)為3;(2[1,+∞).

【解析】

1)易得2xsin2x),再用導(dǎo)數(shù)法研究(0,)上的零點(diǎn)情況,然后結(jié)合的奇偶性求解.

2)令sinxt[1,1],轉(zhuǎn)化為不等式cos2ta1t2)恒成立,再t±1和﹣1t1分類討論求解.

1)易知2xsin2x),顯然0

所以x0fx)的一個(gè)零點(diǎn),

gx)=xsin2x0≤x),則12cos2x0時(shí),x

所以gx)在(0,)單調(diào)遞減,在(,)單調(diào)遞增,

gx)的最小值為g0,

g0)=0,且g0

所以gx)在(0,)上存在唯一零點(diǎn)x0∈(,),

2gx)在(0)上亦存在唯一零點(diǎn),

因?yàn)?/span>是奇函數(shù),所以在(,0)上也存在唯一零點(diǎn)﹣x0

綜上所述,當(dāng)a1時(shí),fx)的導(dǎo)函數(shù)[,]上的零點(diǎn)個(gè)數(shù)為3;

2)不等式2cos2sinx+a2x2afx)恒成立,即不等式cos2sinxacos2x恒成立,

sinxt[1,1],則等價(jià)于不等式cos2ta1t21)恒成立,

①若t21,即t±1時(shí),不等式(1)顯然成立,此時(shí)aR,

②若﹣1t1時(shí),不等式(1)等價(jià)于a2

設(shè)ht(﹣1t1),

當(dāng)0≤t1時(shí),,

φt)=tcos2t﹣(1t2sin2t0≤t1

=(2t21cos2t0≤t1),

已知00,且,

φt)在(0),(1)上單調(diào)遞減,在(,)上單調(diào)地增,

φ0)=0,φ)=10,所以φt)<0在(01)上恒成立,

所以ht)在[0,1)上單調(diào)遞減,則hth0)=1,

顯然函數(shù)ht)為偶函數(shù),故函數(shù)ht)在[11]上的最大值為1,

因此a≥1

綜上所述,滿足題意的實(shí)數(shù)a的取值范圍為[1+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.

①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;

②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績在區(qū)間內(nèi);

③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);

④乙同學(xué)連續(xù)九次測驗(yàn)成績每一次均有明顯進(jìn)步.

其中正確的個(gè)數(shù)為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).

(1)若λ=時(shí),證明:△ABC為直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人進(jìn)行一場比賽,該比賽采用三局兩勝制,即先獲得兩局勝利者獲得該場比賽勝利.在每一局比賽中,都不會出現(xiàn)平局,甲獲勝的概率都為.

1)求甲在第一局失利的情況下,反敗為勝的概率;

2)若,比賽結(jié)束時(shí),設(shè)甲獲勝局?jǐn)?shù)為,求其分布列和期望;

3)若甲獲得該場比賽勝利的概率大于甲每局獲勝的概率,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1、F2分別為雙曲線Ca0b0)的左、右焦點(diǎn),點(diǎn)Mx0,y0)(x00)為C的漸近線與圓x2+y2a2的一個(gè)交點(diǎn),O為坐標(biāo)原點(diǎn),若直線F1MC的右支交于點(diǎn)N,且|MN||NF2|+|OF2|,則雙曲線C的離心率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線是過點(diǎn)的動直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.

1)求拋物線的方程;

2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B面積為,面積為,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)討論的單調(diào)性;

2)若上僅有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx,

1)討論函數(shù)fx)的單調(diào)性;

2)證明:a1時(shí),fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):

A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案