用秦九韶算法求多項(xiàng)式f(x)=7x6+6x4+3x2+2當(dāng)x=4時(shí)的值時(shí),先算的是( 。
A、4×4=16
B、4×4×4×4×4×4=4096
C、7×4+6=34
D、7×4+0=28
考點(diǎn):中國(guó)古代數(shù)學(xué)瑰寶
專題:算法和程序框圖
分析:用秦九韶算法求多項(xiàng)式f(x)=(((((7x+0)x+6)x+0)x+3)x+0)x+2,即可得出.
解答: 解:用秦九韶算法求多項(xiàng)式f(x)=7x6+6x4+3x2+2=(((((7x+0)x+6)x+0)x+3)x+0)x+2,
當(dāng)x=4時(shí)的值時(shí),先算的是7×4+0=28.
故選:D.
點(diǎn)評(píng):本題考查了利用秦九韶算法求多項(xiàng)式的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)兩點(diǎn)A(0,4),B(4,6)且圓心在直線x-2y-2=0上的圓的標(biāo)準(zhǔn)方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x>1,x2≥3”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2-3a2x,其中a≥0
(1)若f′(0)=-3,求a的值;
(2)在(1)條件下,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(3)求函數(shù)f(x)在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(ωx+
π
3
),又f(α)=-2,f(β)=0,且|α-β|的最小值為
π
2
,則正數(shù)ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α,β都是銳角,且sinα=
10
10
,sinβ=
5
5
,則α+β=( 。
A、
π
4
B、
π
2
C、
4
D、
π
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商品銷售量y(件)與銷售價(jià)格x(元/件)負(fù)相關(guān),則其回歸方程可能是(  )
A、
y
=5x-10
B、
y
=5x+10
C、
y
=-5x-10
D、
y
=-5x+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
cosx
1-sin2x
+
sinx
1-cos2x
+
tanx
tan2x
的值域是( 。
A、{3,-1}
B、{1,3}
C、{-3,-1,1}
D、{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)函數(shù)圖象和函數(shù)的四個(gè)關(guān)系式:

①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y),已知每個(gè)函數(shù)圖象都有滿足其中的一個(gè)關(guān)系式,則它們之間的對(duì)應(yīng)是( 。
A、①→a ②→d ③→c ④→b
B、①→b ②→c ③→a ④→d
C、①→c ②→a ③→b ④→d
D、①→d ②→a ③→b ④→c

查看答案和解析>>

同步練習(xí)冊(cè)答案