已知f(x)=x2-4x+5在區(qū)間[t,t+2]上的最小值為g(t)
(1)寫(xiě)出函數(shù)g(t)的解析式;
(2)畫(huà)出函數(shù)g(t)的圖象,并指出函數(shù)g(t)的單調(diào)增區(qū)間和單調(diào)減區(qū)間.
分析:(1)先用配方法找到f(x)的對(duì)稱(chēng)軸,再按照:t+2≤2,t+2>2且t<2,t≥2時(shí),三種情況討論求解.
(2)由圖象可得函數(shù)g(t)單調(diào)區(qū)間.
解答:解:(1)函數(shù)f(x)=x
2-4x+5=(x-2)2+1,
則對(duì)稱(chēng)軸為:x=2
①當(dāng)t+2≤2即t≤0時(shí),g(t)=f(t+2)=t
2+1
②當(dāng)t+2>2且t<2,即0<t<2時(shí),g(t)=f(2)=1
③當(dāng)t≥2時(shí),g(t)=f(t)=(t-2)
2+1=t
2-4t+5
∴
g(t)= | t2+1,t≤0 | 1,0<t<2 | (t-2)2+1,t≥2 |
| |
(2)由圖象可得,函數(shù)g(t)單調(diào)增區(qū)間為[2,+∞),
單調(diào)減區(qū)間為(-∞,0]
點(diǎn)評(píng):本題主要考查二次函數(shù)求最值和構(gòu)建新函數(shù)進(jìn)一步研究函數(shù)性質(zhì)的思想,這樣能達(dá)到會(huì)一題會(huì)一類(lèi)的目的.