已知點P為橢圓C:
x2
4
+
y2
3
=1上動點,F(xiàn)1,F(xiàn)2分別是橢圓C的焦點,則|PF1|-|PF2|的最大值為( 。
A.2B.3C.2
3
D.4
∵點P為橢圓C:
x2
4
+
y2
3
=1上動點,
∴a=2,b=
3
,可得c=
a2-b2
=1
運動點P可得|PF1|∈[a-c,a+c],即|PF1|∈[1,3]
當P與橢圓的左頂點重合時,|PF1|的最小值為1;當P與橢圓的右頂點重合時,
|PF1|的最大值為3
同理,P與橢圓的左頂點重合時,|PF2|的最大值為3;當P與橢圓的右頂點重合時,|PF2|的最小值為1
∴當P與橢圓的右頂點重合時,|PF1|-|PF2|達到最大值,最大值為3-1=2.
故選:A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓
x2
16
+
y2
m
=1
過點(2,3),橢圓上一點P到兩焦點F1、F2的距離之差為2,
(1)求橢圓方程
(2)試判斷△PF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P(2cosα,
3
sinα)
(α∈R)與橢圓C:
x2
4
+
y2
3
=1
的位置關系是(  )
A.點P在橢圓C上
B.點P與橢圓C的位置關系不能確定,與α的取值有關
C.點P在橢圓C內(nèi)
D.點P在橢圓C外

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,若△AF1F2為正三角形且周長為6;
(1)求橢圓C的標準方程;
(2)若橢圓C上存在A,B兩點關于直線y=x+m對稱,求實數(shù)m的取值范圍;
(3)若直線l:y=kx+n與橢圓C交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證直線l過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知實數(shù)4,m,9構(gòu)成一個等比數(shù)列,則圓錐曲線x2+
y2
m
=1
的離心率為(  )
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P在橢圓
x2
49
+
y2
24
=1
上,F(xiàn)1、F2是橢圓的焦點,且PF1⊥PF2,求
(1)|PF1|•|PF2|
(2)△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,從橢圓
x2
a2
+
y2
b2
=1(a>b>o)上一點P向x軸作垂線,垂足恰好為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且ABOP,則橢圓的離心率e=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
36
+
y2
20
=1的離心率e是( 。
A.
5
3
B.
3
2
C.
3
5
5
D.
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線
x2
36
+
y2
9
=1
與曲線
x2
36-k
+
y2
9-k
=1(k<9)
的( 。
A.長、短軸相等B.準線相等
C.離心率相等D.焦距相等

查看答案和解析>>

同步練習冊答案