精英家教網 > 高中數學 > 題目詳情

【題目】在所有棱長都相等的三棱柱中,.

1)證明:;

2)若二面角的大小為,求與平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

(1),,取線段的中點,連接,再證明平面即可.

(2)根據(1)可知是二面角的平面角,進而找到與平面所成角再求解即可.或者建立空間直角坐標系,利用空間向量求解線面角的方法求解.

)連,,取線段的中點,連接,

為等邊三角形,

,,

,∴平面,

.

)法一:∵,,

是二面角的平面角,

平面,∴平面平面,

的交點為,過,則平面,

與平面所成角.

由題意知的重心,,

,,

,∴,

.

法二:由,以軸,軸,過點平面的垂線為軸,如圖建立空間直角坐標系,得

,,,,,,

,,,

設平面的法向量,

,得,令,,

.

與平面所成角為,

,

所以與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,使電路接通,開關不同的開閉方式有( )

A. 11B. 20

C. 21D. 12

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,判斷上的單調性并加以證明;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統計量的值.

(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程;

(2)已知這種產品的年利潤zx,y的關系為,根據(1)中的結果回答下列問題:

①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?

②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為

參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:ab0)的兩個焦點分別為F1(-0)、F2,0.M10)與橢圓短軸的兩個端點的連線相互垂直.

1)求橢圓C的方程;

2)已知點N的坐標為(32),點P的坐標為(mn)(m≠3.過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1k32k2,試求m,n滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為m為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線與曲線C交于M,N兩點.

(1)求直線l的普通方程和曲線C的直角坐標方程;

(2)求|MN|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.

(1)求橢圓的離心率;

(2)設直線與橢圓交于兩點,若直線的斜率之和為2,證明:過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,側面是等邊三角形,且平面平面,的中點,,.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)直線上是否存在點,使得平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的極值;

(2)若函數上是單調遞增函數,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案