【題目】在所有棱長都相等的三棱柱中,.
(1)證明:;
(2)若二面角的大小為,求與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1) 連,,取線段的中點,連接和,再證明平面即可.
(2)根據(1)可知是二面角的平面角,進而找到與平面所成角再求解即可.或者建立空間直角坐標系,利用空間向量求解線面角的方法求解.
(Ⅰ)連,,取線段的中點,連接和,
∵和為等邊三角形,
∴,,
又,∴平面,
∴.
(Ⅱ)法一:∵,,
∴是二面角的平面角,
∵平面,∴平面平面,
記與的交點為,過作于,則平面,
∴是與平面所成角.
由題意知為的重心,,
∴,,
∴,∴,
∴.
法二:由,以為軸,為軸,過點平面的垂線為軸,如圖建立空間直角坐標系,得
,,,,,,
則,,,
設平面的法向量,
則,得,令得,,
則.
設與平面所成角為,
,
所以與平面所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統計量的值.
(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產品的年利潤z與x,y的關系為,根據(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(m為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線與曲線C交于M,N兩點.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.
(1)求橢圓的離心率;
(2)設直線與橢圓交于兩點,若直線與的斜率之和為2,證明:過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面是等邊三角形,且平面平面,為的中點,,,.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)直線上是否存在點,使得平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com