函數(shù)y=x4在x=-1處的導(dǎo)數(shù)為( 。
分析:利用導(dǎo)數(shù)的運(yùn)算法則即可得出.
解答:解:∵y′=4x3,∴y|x=-1=4×(-1)3=-4.
故選D.
點(diǎn)評(píng):熟練掌握導(dǎo)數(shù)的運(yùn)算法則是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
f(b)-f(a)b-a
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).如y=x4是[-1,1]上的平均值函數(shù),0就是它的均值點(diǎn).
(1)判斷函數(shù)f(x)=-x2+4x在區(qū)間[0,9]上是否為平均值函數(shù)?若是,求出它的均值點(diǎn);若不是,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)對(duì)于函數(shù)y=f(x),部分x與y的對(duì)應(yīng)關(guān)系如下表:
x 1 2 3 4 5 6 7 8 9
y 7 4 5 8 1 3 5 2 6
數(shù)列{xn}滿足x1=2,且對(duì)任意n∈N*,點(diǎn)(xn,xn+1)都在函數(shù)y=f(x)的圖象上,則x1+x2+x3+x4+…+x2012+x2013的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省南昌二中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

函數(shù)y=x4在x=-1處的導(dǎo)數(shù)為( )
A.3
B.-3
C.4
D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=x4在x=-1處的導(dǎo)數(shù)為( 。
A.3B.-3C.4D.-4

查看答案和解析>>

同步練習(xí)冊(cè)答案