【題目】如圖,在圓心角為直角的扇形OAB區(qū)域中,M、N分別為OAOB的中點,在MN兩點處各有一個通信基站,其信號的覆蓋范圍分別為以OA、OB為直徑的圓,在扇形OAB內隨機取一點,則此點無信號的概率是 

A. B. C. D.

【答案】B

【解析】

試題OA的中點是M,則∠CMO=90°,這樣就可以求出弧OC與弦OC圍成的弓形的面積,從而可求出兩個圓的弧OC圍成的陰影部分的面積,用扇形OAB的面積減去三角形的面積,減去加上兩個弧OC圍成的面積就是無信號部分的面積,最后根據(jù)幾何概型的概率公式解之即可.

解:OA的中點是M,則∠CMO=90°,半徑為OA=r

S扇形OAB=πr2,S半圓OAC=π2=πr2,

SOmC=××=r2,

SOC=S半圓OAC﹣SODC=πr2r2

兩個圓的弧OC圍成的陰影部分的面積為πr2r2,

圖中無信號部分的面積為πr2r2πr2r2=πr2r2,

無信號部分的概率是:

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , 平面.

(1)求證: 平面;

(2)若為線段的中點,且過三點的平面與線段交于點,確定點的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C=1ab0)的左右焦點分別為F1F2,焦距為2,一條準線方程為x=2P為橢圓C上一點,直線PF1交橢圓C于另一點Q

1)求橢圓C的方程;

2)若點P的坐標為(0,b),求過點PQ,F2三點的圓的方程;

3)若=,且λ[],求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3.

(1)求橢圓的方程;

(2)動直線與橢圓交于A,B兩點,在平面上是否存在定點P,使得當直線PA與直線PB的斜率均存在時,斜率之和是與無關的常數(shù)?若存在,求出所有滿足條件的定點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

假設每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產量與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.

降雨量

畝產量

500

700

600

400

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點是直線l上的動點,若在圓C上總存在不同的兩點A,B使得,則的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半圓,分別為半圓軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鮮花小鎮(zhèn)圈定一塊半徑為1百米的圓形荒地,準備建成各種不同鮮花景觀帶.為了便于游客觀賞,準備修建三條道路AB,BC,CA,其中A,B,C分別為圓上的三個進出口,且AB分別在圓心O的正東方向與正北方向上,C在圓心O南偏西某一方向上.在道路ACBC之間修建一條直線型水渠MN種植水生觀賞植物黃鳶尾(其中點M,N分別在BCCA上,且M在圓心O的正西方向上,N在圓心O的正南方向上),并在區(qū)域MNC內種植柳葉馬鞭草.

(1)求水渠MN長度的最小值;

(2)求種植柳葉馬鞭草區(qū)域MNC面積的最大值(水渠寬度忽略不計).

查看答案和解析>>

同步練習冊答案