16.已知等比數(shù)列{an}中,a3=3,a10=384,則該數(shù)列的通項(xiàng)an=(  )
A.3•2n-4B.3•2n-3C.3•2n-2D.3•2n-1

分析 由已知列式求得等比數(shù)列的公比,進(jìn)一步求得首項(xiàng),代入等比數(shù)列的通項(xiàng)公式得答案.

解答 解:在等比數(shù)列{an}中,由a3=3,a10=384,
得${q}^{7}=\frac{{a}_{10}}{{a}_{3}}=\frac{384}{3}=128$,
∴q=2.
則${a}_{1}=\frac{{a}_{3}}{{q}^{2}}=\frac{3}{4}$,
∴${a}_{n}=\frac{3}{4}•{2}^{n-1}=3•{2}^{n-3}$.
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某高中數(shù)學(xué)老師從一張測(cè)試卷的12道選擇題、4道填空題、6道解答題中任取3道題作分析,則在取到選擇題時(shí)解答題也取到的概率為$\frac{43}{71}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=$(\frac{1}{3})^{{x}^{2}}$的值域是(  )
A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,F(xiàn)1、F2是橢圓的左、右焦點(diǎn),過(guò)F2作直線l交橢圓于A、B兩點(diǎn),若△F1AB的周長(zhǎng)為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l的斜率為0,且它的中垂線與y軸交于Q,求Q的縱坐標(biāo)的范圍;
(Ⅲ)是否在x軸上存在點(diǎn)M(m,0),使得x軸平分∠AMB?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一個(gè)總體的60個(gè)個(gè)體的編號(hào)為0,1,2,…,59,現(xiàn)要從中抽取一個(gè)容量為10的樣本,請(qǐng)根據(jù)編號(hào)按被6除余3的方法,取足樣本,則抽取的樣本號(hào)碼是3,9,15,21,27,33,39,45,51,57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)=x3+ax2+bx+c,過(guò)曲線y=f(x)上的點(diǎn)P(1,f(x))的切線方程為y=3x+1.
(1)若y=f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)若函數(shù)y=f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求適合等式:(2x-1)+i=y+(y-3)i的x,y值,其中x∈R,y是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,已知b=1,c=2,AD是∠A的平分線,AD=$\frac{2\sqrt{3}}{3}$,則∠C=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.給出下列命題
(1)實(shí)數(shù)的共軛復(fù)數(shù)一定是實(shí)數(shù);
(2)滿足|z-i|+|z+i|=2的復(fù)數(shù)z的軌跡是橢圓;
(3)若m∈Z,i2=-1,則im+im+1+im+2+im+3=0;
(4)若“a,b,c是不全相等的實(shí)數(shù)”,則(a-b)2+(b-c)2+(c-a)2≠0;
(5)若“a,b,c是不全相等的實(shí)數(shù)”,a≠b,b≠c,c≠a不能同時(shí)成立
其中正確命題的序號(hào)是( 。
A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(5)D.(3)(4)(5)

查看答案和解析>>

同步練習(xí)冊(cè)答案