16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{3}$,若弦AB經(jīng)過(guò)焦點(diǎn)F1,則△ABF2的周長(zhǎng)為12.

分析 由橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{3}$,知長(zhǎng)半軸a=3,利用橢圓的定義知,△ABF2的周長(zhǎng)為4a,從而可得答案.

解答 解:∵橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{3}$,
∴$\frac{\sqrt{{a}^{2}-8}}{a}$=$\frac{1}{3}$
∴a=3,
又過(guò)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),A,B與橢圓的另一個(gè)焦點(diǎn)F2構(gòu)成△ABF2,
則△ABF2的周長(zhǎng)l=|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=12.
故答案為:12

點(diǎn)評(píng) 本題考查了橢圓的簡(jiǎn)單性質(zhì),著重考查橢圓定義的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)據(jù)x1,x2,x3,…,xn是哈爾濱市n(n≥3,n∈N*)個(gè)普通職工的2015年的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上比爾•蓋茨的2015年的年收入xn+1(約900億元),則這n+1個(gè)數(shù)據(jù),下列說(shuō)法正確的是( 。
A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,b=5,B=$\frac{π}{4}$,sinA=$\frac{2\sqrt{5}}{5}$,則a的值是( 。
A.10$\sqrt{2}$B.2$\sqrt{10}$C.$\sqrt{10}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.以下四個(gè)命題:
①設(shè)回歸直線方程$\widehat{y}$=0.2x+12,則 x每增加一個(gè)單位時(shí),$\widehat{y}$平均減少0.2個(gè)單位;
②在極坐標(biāo)系中,圓ρ=cosθ與直線ρcosθ=1相切;
③函數(shù)y=$\frac{1}{x}$在定義域內(nèi)為減函數(shù);
④若y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=$\frac{1}{2}$x+2,則f(1)+f'(1)=3.
其中真命題的序號(hào)為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知△ABC的頂點(diǎn)A(1,0,0),B(0,2,0),C(0,0,1),CD是AB邊上的高,則點(diǎn)D的坐標(biāo)為$(\frac{4}{5},\frac{2}{5},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖所示,斜三棱柱ABC-A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的中點(diǎn).
(1)證明AD1∥平面BDC1;
(2)證明BD∥平面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),則cosθ=$\frac{\sqrt{5}}{5}$; sin(2θ-$\frac{π}{3}$)=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{15}}{4}$,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且PF1F2的周長(zhǎng)是8+2$\sqrt{15}$.
(1)求橢圓C的方程;
(2)是否存在斜率為1的直線L與橢圓C交于A,B兩點(diǎn),使得以AB為直徑圓過(guò)原點(diǎn),若存在寫(xiě)出直線方程;
(3)設(shè)圓T:(x-t)2+y2=$\frac{4}{9}$,過(guò)橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于E、F兩點(diǎn),當(dāng)圓心在x軸上移動(dòng)且t∈(1,3)時(shí),求EF的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)已知函數(shù)f(x)的定義域?yàn)椋?1,2],求函數(shù)f(x2-1)的定義域;
(2)已知函數(shù)f(3x-4)的定義域?yàn)閇0,4),求函數(shù)f(1-2x)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案