在△ABC中,若
a
sin
A
2
=
b
sin
B
2
=
c
sin
C
2
,則△ABC的形狀是( 。
A、等邊三角形
B、銳角三角形
C、鈍角三角形
D、直角三角形
分析:根據(jù)正弦定理,將條件進(jìn)行化簡(jiǎn),
解答:解:根據(jù)正弦定理可知
a
sin
A
2
=
b
sin
B
2
=
c
sin
C
2

等價(jià)為
sin?A
sin?
A
2
=
sin?B
sin?
B
2
=
sin?C
sin?
C
2
,
2sin?
A
2
cos?
A
2
sin?
A
2
=
2sin?
B
2
cos?
B
2
sin?
B
2
=
2sin?
C
2
cos?
C
2
sin?
C
2
,
cos?
A
2
=cos?
B
2
=cos?
C
2

在三角形ABC中,可知
A
2
=
B
2
=
C
2
,
∴A=B=C.
故三角形ABC是等邊三角形.
故選:A.
點(diǎn)評(píng):本題主要考查三角形的形狀的判斷,利用正弦定理和三角函數(shù)的倍角公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
、
AN
=
d
,試用
c
、
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
,
AC
=
b
若P,Q,S為線段BC的四等分點(diǎn),試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=
2
,BC=
1
2
AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市海淀區(qū)八一中學(xué)高三(上)周練數(shù)學(xué)試卷(11)(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市東城區(qū)示范校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案