設(shè)扇形的圓心角為60°,面積是6π,將它圍成一個(gè)圓錐,則該圓錐的表面積是( 。
A、
13
2
π
B、7π
C、
15
2
π
D、8π
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:設(shè)扇形的半徑即圓錐的母線為l,圓錐的底面半徑為r,利用扇形的面積公式與弧長(zhǎng)公式求得l,r;再利用勾股定理求圓錐的高,代入面積公式和體積公式計(jì)算可得答案.
解答: 解:設(shè)扇形的半徑即圓錐的母線為l,圓錐的底面半徑為r,
則由6π=
1
2
×
π
3
r2
,得r=6.
∵扇形的圓心角為60°,
∴扇形的弧長(zhǎng)為l=
π
3
×6=2π

即圓錐的底面周長(zhǎng)為2π,
其半徑r=1.
所以底面面積為π×12=π,
所以圓錐的表面積是S=6π+π=7π.
故選:B
點(diǎn)評(píng):本題考查了圓錐的側(cè)面展開(kāi)圖及側(cè)面積公式,考查了扇形的弧長(zhǎng)公式及圓的周長(zhǎng)公式,關(guān)鍵是結(jié)合圖形求底面圓的半徑,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=2
i
-3
j
,
b
=2
i
+3
j
,其中
i
j
是互相垂直的單位向量.
(1)求以
a
,
b
為一組鄰邊的平行四邊形的面積;
(2)設(shè)向量
m
=
a
-3
b
n
a
+
b
,其中λ為實(shí)數(shù),若
m
n
夾角為鈍角,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x-y+6≥0
x+y≥0
x≤3
,則z=
4x
2-y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某集團(tuán)公司舉辦一次募捐愛(ài)心演出,有1000人參加,每人一張門(mén)票,每張100元.在演出過(guò)程中穿插抽獎(jiǎng)活動(dòng),第一輪抽獎(jiǎng)從這1000張票根中隨機(jī)抽取10張,其持有者獲得價(jià)值1000元的獎(jiǎng)品,并參加第二輪抽獎(jiǎng)活動(dòng).第二輪抽獎(jiǎng)由第一輪獲獎(jiǎng)?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個(gè)數(shù)x,y(x,y∈{0,1,2,3}),滿足|x-1|+|y-2|≥3電腦顯示“中獎(jiǎng)”,且抽獎(jiǎng)?wù)攉@得特等獎(jiǎng)獎(jiǎng)金;否則電腦顯示“謝謝”,則不中獎(jiǎng).
(1)已知小明在第一輪抽獎(jiǎng)中被抽中,求小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率;
(2)若該集團(tuán)公司望在此次活動(dòng)中至少獲得61875元的收益,則特等獎(jiǎng)獎(jiǎng)金最高可設(shè)置成多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四棱錐P-ABCD的三視圖如圖所示,且PA垂直平面ABCD
(1)求三棱錐P-BCD的體積;
(2)求四棱錐P-ABCD的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)閇a,b].則“函數(shù)f(x)在[a,b]上為單調(diào)函數(shù)”是“函數(shù)f(x)在[a,b]上有最大值和最小值”的( 。
A、充分但非必要條件
B、必要但非充分條件
C、充要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若x≥0,則x2≥0”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:x+ay+1=0(a∈R)在y軸上的截距為-2,則直線l的斜率為( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=cos(
x
3
+θ)(0<θ<2π)在區(qū)間(-π,π)上單調(diào)遞增,則實(shí)數(shù)θ的取值范圍是( 。
A、[0,
4
3
π]
B、[π,2π]
C、[
4
3
π,
5
3
π]
D、[
4
3
π,
7
3
π]

查看答案和解析>>

同步練習(xí)冊(cè)答案