5.某汽車(chē)的使用年數(shù)x與所支出的維修費(fèi)用y的統(tǒng)計(jì)數(shù)據(jù)如表:
 使用年數(shù)x(單位:年) 1 2 3 4 5
 維修總費(fèi)用y(單位:萬(wàn)元) 0.5 1.2 2.2 3.3 4.5
根據(jù)上表可得y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x-0.69,若該汽車(chē)維修總費(fèi)用超過(guò)10萬(wàn)元就不再維修,直接報(bào)廢,據(jù)此模型預(yù)測(cè)該汽車(chē)最多可使用( 。
A.8年B.9年C.10年D.11年

分析 計(jì)算$\overline{x}$、$\overline{y}$,求出回歸系數(shù),寫(xiě)出回歸方程,據(jù)此模型預(yù)測(cè)該汽車(chē)最多可使用年限.

解答 解:計(jì)算$\overline{x}$=$\frac{1}{5}$×(1+2+3+4+5)=3,
$\overline{y}$=$\frac{1}{5}$×(0.5+1.2+2.2+3.3+4.5)=2.34;
 代入回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x-0.69得
2.34=$\stackrel{∧}$×3-0.69,
解得$\stackrel{∧}$=1.01;
∴回歸方程為$\stackrel{∧}{y}$=1.01x-0.69,
令$\stackrel{∧}{y}$=1.01x-0.69≥10,
解得x≥10.6≈11,
據(jù)此模型預(yù)測(cè)該汽車(chē)最多可使用11年.
故選:D.

點(diǎn)評(píng) 本題考查了線性回歸方程過(guò)樣本中心點(diǎn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知${log_{\frac{1}{2}}}a<{log_{\frac{1}{2}}}b$,則下列不等式一定成立的是( 。
A.${({\frac{1}{4}})^a}<{({\frac{1}{3}})^b}$B.$\frac{1}{a}>\frac{1}$C.ln(a-b)>0D.3a-b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.物體運(yùn)動(dòng)方程為$S=\frac{1}{4}{t^4}-3$,則t=2時(shí)瞬時(shí)速度為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合$A=\{\left.x\right|y=\sqrt{2x-{x^2}}\}$,B={y|y=2x,x>0},則A∪B=(  )
A.(1,2]B.[0,+∞)C.[0,1)∪(1,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為2c(c>0),拋物線y2=2cx的準(zhǔn)線交雙曲線左支于A,B兩點(diǎn),且∠AOB=120°,其中O為原點(diǎn),則雙曲線的離心率為( 。
A.2B.$1+\sqrt{2}$C.$1+\sqrt{3}$D.$1+\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某高校在舉行藝術(shù)類(lèi)高考招生考試時(shí),對(duì)100個(gè)考生進(jìn)行了一項(xiàng)專(zhuān)業(yè)水平考試,考試成績(jī)滿(mǎn)分為100分,成績(jī)出來(lái)后,老師對(duì)每個(gè)成績(jī)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人數(shù)進(jìn)行了統(tǒng)計(jì),丙得到如圖所示的頻率分布直方圖.
(1)求a的值,并從頻率分布直方圖中求出這些成績(jī)的中位數(shù);
(2)為了能從分了解考生情況,對(duì)考試成績(jī)落在[70,90)內(nèi)的考生采用分層抽樣的方法抽取5名考生.
(i)求在[70,80)與[80,90)內(nèi)各抽取多少名考生;
(ii)如果從這5名中選出兩人進(jìn)行一段表演,求恰有一名考生來(lái)自[80,90)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知中心在坐標(biāo)原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)與拋物線y=-$\frac{1}{4}$x2的焦點(diǎn)重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.P為拋物線x2=-4y上一點(diǎn),A(2$\sqrt{2}$,0),則P到此拋物線的準(zhǔn)線的距離與P到點(diǎn)A的距離之和的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,則實(shí)數(shù)λ的取值范圍為[14,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案