極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo) 系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
(Ⅰ)該橢圓的直角標(biāo)方程為, 2分
設(shè),
所以的取值范圍是 4分
(Ⅱ)應(yīng)用直線的參數(shù)方程為(為參數(shù)),(5分)
代入得:
確定, ,
證得。
【解析】
試題分析:(Ⅰ)該橢圓的直角標(biāo)方程為, 2分
設(shè),
所以的取值范圍是 4分
(Ⅱ)設(shè)直線的傾斜角為,直線的傾斜角為,
則直線的參數(shù)方程為(為參數(shù)),(5分)
代入得:
即 7分
設(shè)對應(yīng)參數(shù)分別為,則, 8分
同理 9分
所以(10分)
考點(diǎn):本題主要考查極坐標(biāo),參數(shù)方程及參數(shù)方程的應(yīng)用,兩角和差的三角函數(shù),三角函數(shù)的性質(zhì)。
點(diǎn)評:中檔題,直角坐標(biāo)系與極坐標(biāo)系互化,,。參數(shù)方程的應(yīng)用,多應(yīng)用于確定線段的長度,結(jié)合韋達(dá)定理,往往化難為易。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林市高三三模(期末)理科數(shù)學(xué)試卷(解析版) 題型:解答題
極坐標(biāo)系中橢圓C的方程為 以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo) 系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林市高三三模(期末)文科數(shù)學(xué)試卷(解析版) 題型:解答題
極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo) 系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo) 系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,
且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程,若橢圓上任一點(diǎn)坐標(biāo)為,
求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com