【題目】已知命題p:對(duì)任意,不等式恒成立;命題q:存在,使得成立.

(1)p為真命題,求m的取值范圍;

(2)當(dāng),若pq為假,pq為真,求m的取值范圍.

【答案】(1) [1,2](2) (,1)(1,2]

【解析】試題分析:(1)(2x2)minm23m.m23m2,解得1≤m≤2;(2pq中一個(gè)是真命題,一個(gè)是假命題,解得m的取值范圍為(,1)(1,2]

試題解析:

 (1)∵對(duì)任意x[0,1],不等式2x2≥m23m恒成立,

(2x2)minm23m.m23m2.

解得1≤m≤2.

因此,若p為真命題時(shí),m的取值范圍是[1,2]

(2)a1,且存在x[1,1],使得max成立,

mx,命題q為真時(shí),m≤1.

pq為假,pq為真,

p,q中一個(gè)是真命題,一個(gè)是假命題.

當(dāng)pq假時(shí),則解得1<m≤2;

當(dāng)pq真時(shí),m<1.

綜上所述,m的取值范圍為(1)(1,2]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為圓的圓心, 是圓上動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)上的點(diǎn),滿足

(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(2)若斜率為的直線與圓相切,與(1)中所求點(diǎn)的軌跡教育不同的兩點(diǎn) 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車(chē)流量與的數(shù)據(jù)如表:

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車(chē)流量為12萬(wàn)輛時(shí)的濃度.

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計(jì)),上下底面均為邊長(zhǎng)為5的正三角形,側(cè)棱為10,側(cè)面AA1B1B水平放置,如圖所示,點(diǎn)D、EF、G分別在棱CA、CBC1B1、C1A1,水面恰好過(guò)點(diǎn)D,E,FC,CD=2

(1)證明:DEAB;

()若底面ABC水平放置時(shí),求水面的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廣場(chǎng)有一塊不規(guī)則的綠地如圖所示,城建部門(mén)欲在該地上建造一個(gè)底座為三角形的環(huán)境標(biāo)志,小李,小王設(shè)計(jì)的底座形狀分別為, ,經(jīng)測(cè)量米, 米, 米,

(I)求的長(zhǎng)度;

(Ⅱ)若環(huán)境標(biāo)志的底座每平方米造價(jià)為元,不考慮其他因素,小李,小王誰(shuí)的設(shè)計(jì)建造費(fèi)用最低(請(qǐng)說(shuō)明理由),最低造價(jià)為多少?(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過(guò)點(diǎn)A垂直的直線交軸負(fù)半軸于點(diǎn),且,若過(guò), , 三點(diǎn)的圓恰好與直線相切.過(guò)定點(diǎn)的直線與橢圓交于 兩點(diǎn)(點(diǎn)在點(diǎn), 之間).

Ⅰ)求橢圓的方程;Ⅱ)若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量, ,且滿足.

(1)求點(diǎn)的軌跡方程所代表的曲線

(2)若點(diǎn), , 是曲線上的動(dòng)點(diǎn),點(diǎn)在直線上,且滿足 ,當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切. 、是橢圓的右頂點(diǎn)與上頂點(diǎn),直線與橢圓相交于、兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)四邊形面積取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為正實(shí)數(shù)

(1)若函數(shù)處的切線斜率為2,的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)有兩個(gè)極值點(diǎn),求證

查看答案和解析>>

同步練習(xí)冊(cè)答案