動(dòng)直線x=a與函數(shù)f(x)=2
2
sin
x
2
cos
x
2
和g(x)=
2
cosx的圖象分別交于A、B兩點(diǎn),則AB的最大值為
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:
分析:利用倍角公式把函數(shù)f(x)化積,由A,B兩點(diǎn)的橫坐標(biāo)相同,把縱坐標(biāo)作差后取絕對(duì)值,求出縱坐標(biāo)作差后取絕對(duì)值的最大值得答案.
解答: 解:f(x)=2
2
sin
x
2
cos
x
2
=
2
sinx
,g(x)=
2
cosx,
動(dòng)直線x=a與函數(shù)f(x)和g(x)的圖象分別交于A、B兩點(diǎn),
則A,B的橫坐標(biāo)相同,∴AB的距離即為兩點(diǎn)縱坐標(biāo)差的絕對(duì)值.
則|AB|=|
2
sinx-
2
cosx|=
2
|
2
sin(x-
π
4
)|
=2|sin(x-
π
4
)|

∴AB的最大值為:2.
故答案為:2.
點(diǎn)評(píng):本題考查了三角函數(shù)中的恒等變換的應(yīng)用,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了與三角函數(shù)有關(guān)的最值得求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,求證:“|a|≤2”是“(a+1)2<1”的必要非充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)定義域?yàn)椋?1,1)而且為增函數(shù),若f(2a)+f(a-1)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-x,x∈(0,+∞),g(x)=3x2,則g(f(x))的定義域?yàn)?div id="wnr7fel" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)g(x)=
a
b
x+
2
b
(a>0,b>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過一個(gè)定點(diǎn),則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)fM(x)的定義域?yàn)镽,且定義如下:fM(x)=
1,x∈M
-1,x∉M
(其中M是非空實(shí)數(shù)集).若非空實(shí)數(shù)集A,B滿足A∩B=∅,則函數(shù)g(x)=fA∪B(x)+fA(x)•fB(x)的值域?yàn)?div id="2sjx76n" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan100°=k,則sin80°的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)在x=
π
4
處取得最小值,則( 。
A、f(x+
π
4
)一定是偶函數(shù)
B、f(x+
π
4
)一定是奇函數(shù)
C、f(x-
π
4
)一定是偶函數(shù)
D、f(x-
π
4
)一定是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直角△ABC的直角邊BC=a,AC=b,斜邊AB=c,且a<b,現(xiàn)分別以直線BC,AC和AB為軸將直角△繞軸旋轉(zhuǎn)一周,所得三個(gè)旋轉(zhuǎn)體體積分別為V1,V2和V3,試比較V1,V2,V3的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案