10.“龜兔賽跑”是一則經典故事:兔子與烏龜在賽道上賽跑,跑了一段后,兔子領先太多就躺在道邊睡著了,當他醒來后看到烏龜已經領先了,因此他用更快的速度去追,結果還是烏龜先到了終點,請根據(jù)故事選出符合的路程一時間圖象(  )
A.B.C.D.

分析 先確定烏龜與兔子的函數(shù)圖象,再根據(jù)烏龜先到達終點得出答案.

解答 解:由題意可知烏龜?shù)膱D象為線段,兔子的圖象為折線,
∵兔子醒來時烏龜尚未到達終點,排除D,
∵烏龜先到達終點,排除A,B,
故選C.

點評 本題考查了函數(shù)圖象的意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=(x-1)2-alnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x+2y-1=0垂直,求a的值;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線y=x+b平分圓x2+y2+4x-4y-8=0的周長,則b=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點P是拋物線x=$\frac{1}{4}$y2上的一個動點,則點P到點A(-1,2)的距離與點P到y(tǒng)軸的距離之和的最小值為( 。
A.$2\sqrt{2}$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,已知棱長為4的正方體ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C'D內(包括邊界)的動點,滿足PM=PD,則點P的軌跡長度為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),a=(cosα)cosα,b=(sinα)cosα,c=(cosα)sinα,則( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=ln(1+x),g(x)=a•$\frac{{{x^2}+2x}}{1+x}$(a∈R).
(1)若函數(shù)h(x)=f(x)-g(x)在定義域內單調遞減,求a的取值范圍;
(2)設n∈N*,證明:(1+$\frac{1}{n^2}}$)(1+$\frac{2}{n^2}}$)…(1+$\frac{n}{n^2}}$)<e${\;}^{\frac{1}{4}}}$(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在平行四邊形ABCD中,已知AB=10$\sqrt{3}$,∠B=60°,AC=30,則平行四邊形ABCD的面積300$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知不恒為零的函數(shù)f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函數(shù).
(1)求a,b的值;
(2)求不等式$\frac{{\sqrt{3}}}{3}$f(x-2)<log2(2+$\sqrt{3}$)的解集.

查看答案和解析>>

同步練習冊答案