函數(shù)f(x)=lgx-
1
x
的零點個數(shù)為( 。
A、0B、1C、2D、3
考點:函數(shù)零點的判定定理
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應用
分析:先求出函數(shù)的定義域,再把函數(shù)轉(zhuǎn)化為對應的方程,在坐標系中畫出兩個函數(shù)y1=lgx,y2=
1
x
(x>0)的圖象求出方程的根的個數(shù),即為函數(shù)零點的個數(shù)
解答: 解:由題意,函數(shù)f(x)的定義域為(0,+∞)
由函數(shù)零點的定義,f(x)在(0,+∞)內(nèi)的零點即是方程lgx-
1
x
=0的根.
令y1=lgx,y2=
1
x
(x>0),在一個坐標系中畫出兩個函數(shù)的圖象:
由圖得,兩個函數(shù)圖象有1個交點,
故方程有1個根,即對應函數(shù)有1個零點
故選:B
點評:本題考查了函數(shù)零點、對應方程的根和函數(shù)圖象之間的關系,通過轉(zhuǎn)化和作圖求出函數(shù)零點的個數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-x2
+
x2-1
的定義域是( 。
A、{x|-1<x<1}
B、{x|x<-1,或x>1}
C、{x|0<x<1}
D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且∠F1PF2=
π
3
,記橢圓和雙曲線的離心率分別為e1,e2,則
1
e12
+
3
e22
的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α,β是兩個平面,l是直線,給出以下四個命題:
①若l⊥α,α⊥β,則l∥β,
②若l∥α,α∥β,則l∥β,
③l⊥α,α∥β,則l⊥β,
④l∥α,α⊥β,則l⊥β,
其中真命題有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,曲線y=x2-6x+5與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點,且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖正方體ABCD-A1B1C1D1中,E、F、G分別是BB1、AB、BC的中點.
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
,
D1B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

令f(x)=2sinx+1,若集合A={x|
π
6
≤x≤
3
},B={x|-2+m<f(x)<2+m},若A?B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=tanx(
π
4
≤x≤
4
,且x≠
π
2
)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們把一系列向量ai(i=1,2,3,…n)按次序排成一列,稱之為向量列,記作{
an
}.已知非零的向量列滿足:
a1
=(x1,y1)
,
an
=(xn,yn)=
1
2
(xn-1-yn-1xn-1+yn-1)
(n≥2).
(1)證明數(shù)列{|
an
|}
是等比數(shù)列;
(2)設θn表示向量
an-1
an
的夾角的弧度數(shù)(n≥2),若bn=
π
4n(n-1)θn
,Sn=b2+b3+…+bn,求Sn;
(3)設
a1
=(1,2)
,把
a1
a2
,…,
an
中所有與
a1
共線的向量按原來的順序排成一列,記為
d1
d2
,…,
dn
,…,令
ODn
=
d1
+
d2
+…+
dn
,O為坐標原點,求點列{Dn}的極限點D的坐標.(注:若點Dn坐標為(tn,vn),
lim
n→∞
tn
=t,
lim
n→∞
vn
=v,則點D(t,v)為點列{Dn}的極限點.

查看答案和解析>>

同步練習冊答案