7.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是( 。
A.y=-xB.y=cosxC.y=${x^{\frac{2}{5}}}$D.y=-x2

分析 對4個選項分別進行判斷,即可得出結(jié)論.

解答 解:對于A,是奇函數(shù),不滿足;
對于B,是偶函數(shù),在(0,+∞)上,不單調(diào)遞減,不滿足;
對于C,是偶函數(shù),在(0,+∞)上單調(diào)遞增,不滿足;
對于D,是偶函數(shù),在(0,+∞)上單調(diào)遞減,滿足;
故選D.

點評 本題考查函數(shù)的單調(diào)性與奇偶性,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知無窮數(shù)列{an},滿足an+2=|an+1-an|,n∈N*
(1)若a1=1,a2=2,求數(shù)列前10項和;
(2)若a1=1,a2=x,x∈Z,且數(shù)列{an}前2017項中有100項是0,求x的可能值;
(3)求證:在數(shù)列{an}中,存在k∈N*,使得0≤ak<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對于定義在R上的函數(shù)f(x),若存在正常數(shù)a、b,使得f(x+a)≤f(x)+b對一切x∈R均成立,則稱f(x)是“控制增長函數(shù)”,在以下四個函數(shù)中:①f(x)=x2+x+1; ②f(x)=$\sqrt{|x|}$; ③f(x)=sin(x2);④f(x)=x•sinx.是“控制增長函數(shù)”的有(  )
A.②③B.③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)等差數(shù)列{an}的前n項和為Sn,若a4=4,則S7=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,函數(shù)f(x)=lnx-ax2
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)$a=\frac{1}{8}$時,證明:存在x0∈(2,+∞),使$f({x_0})=f({\frac{3}{2}})$;
(3)若存在屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明:$\frac{ln3-ln2}{5}≤a≤\frac{ln2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,C=90°,函數(shù)y=sin2A+2sinB的值域為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一盒中有12個乒乓球,其中9個新的,3個舊的,從盒中任取3個球來用,用完后裝回盒中,此時盒中舊球個數(shù)X是一個隨機變量,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.《孫子算經(jīng)》是我國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),傳本的《孫子算經(jīng)》共三卷,其中下卷:“物不知數(shù)”中有如下問題:“今有物,不知其數(shù),三三數(shù)之,剩二;五五數(shù)之,剩三;七七數(shù)之,剩二,問:物幾何?”其意思為:“現(xiàn)有一堆物品,不知它的數(shù)目,3個3個數(shù),剩2個,5個5個數(shù),剩3個,7個7個數(shù),剩2個,問這堆物品共有多少個?”試計算這堆物品至少有23個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表,
x-104
f(x)122
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)-a零點的個數(shù)可能為0、1、2、3、4個;
④如果當(dāng)時x∈[-1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在[2,4]是上凸的
其中一定正確命題的序號是①②④.

查看答案和解析>>

同步練習(xí)冊答案