已知,?x∈R,不等式sinx+cosx>m有解,求實數(shù)m的取值范圍.
考點:特稱命題
專題:簡易邏輯
分析:將左邊看成關(guān)于x的函數(shù),然后求其最大值,要使原不等式有解,只需m小于左邊的最大值即可.
解答: 解:令t=sinx+cosx=
2
sin(x+
π
4
)
,易知-
2
≤t≤
2

則要使sinx+cosx>m有解,只需m<
2
即可.
故所求m的范圍是(-∞,
2
)
點評:本題考查了不等式有解的問題與函數(shù)間的關(guān)系,要注意和不等式恒成立問題的區(qū)別.屬于中等難度題,要注意體會思想方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sinx的圖象上所有點左移
π
2
個單位所得圖象對應(yīng)的函數(shù)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖,若輸入的x值為0,則輸出的y值為( 。
A、
3
2
B、0
C、1
D、
3
2
或0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sin2x圖象向右平移
π
12
個單位得到y(tǒng)=f(x)圖象,則f(x)單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量
OA
,
OB
不共線,且
BM
=
1
3
BA
,則向量
OM
=(  )
A、
1
3
AO
-
2
3
OB
B、
2
3
AO
+
1
3
OB
C、
1
3
AO
+
2
3
OB
D、
1
3
AO
-
4
3
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,t),
b
=(
1
2
,
3
2
),且向量
c
=
a
+(tanθ-3)
b
,
d
=m
a
+
b
tanθ,其中m,θ均為實數(shù).
(1)若
a
b
,試求t的值;
(2)若
a
b
,試求|
a
+
b
|;
(3)當t=-1,
c
d
時,求實數(shù)m最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-2,0),B(2,0),點P在圓(x-3)2+(y-4)2=r2(r>0)上,滿足PA2+PB2=40,若這樣的點P有兩個,則r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-8lnx,g(x)=-x2+14x.
(1)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若方程f(x)=g(x)+m有唯一解,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2+(2m-1)x+m-6=0有一個根不大于-1,另一個根不小于1.
(1)求實數(shù)m的取值范圍;
(2)求方程兩根平方和的最值.

查看答案和解析>>

同步練習冊答案