2.將3顆骰子各擲一次,記事件A為“三個點數(shù)都不同”,事件B為“至少出現(xiàn)一個1點”,則條件概率P(A|B)和P(B|A)分別為( 。
A.$\frac{1}{2},\frac{60}{91}$B.$\frac{5}{18},\frac{60}{91}$C.$\frac{60}{91},\frac{1}{2}$D.$\frac{91}{216},\frac{1}{2}$

分析 根據(jù)條件概率的含義,明確條件概率P(A|B),P(B|A)的意義,即可得出結(jié)論.

解答 解:根據(jù)條件概率的含義,P(A|B)其含義為在B發(fā)生的情況下,A發(fā)生的概率,即在“至少出現(xiàn)一個3點”的情況下,“三個點數(shù)都不相同”的概率,
∵“至少出現(xiàn)一個1點”的情況數(shù)目為6×6×6-5×5×5=91,“三個點數(shù)都不相同”則只有一個3點,共${C}_{3}^{1}$×5×4=60種,∴P(A|B)=$\frac{60}{91}$;
P(B|A)其含義為在A發(fā)生的情況下,B發(fā)生的概率,即在“三個點數(shù)都不相同”的情況下,“至少出現(xiàn)一個1點”的概率,∴P(B|A)=$\frac{1}{2}$,
故選C.

點評 本題考查條件概率,考查學生的計算能力,明確條件概率的含義是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若奇函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),又f(-3)=0,則不等式f(x)<0的解集為(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(0,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.將五進制數(shù)324(5)轉(zhuǎn)化為二進制數(shù)是(  )
A.1011001(2)B.1110101(2)C.1010101(2)D.1101001(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.從編號為001,002,…,500的500個產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中編號最小的兩個編號分別為007,032,則樣本中最大的編號應(yīng)該為482.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.給定兩個長度為1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它們的夾角為$\frac{2π}{3}$.點C在以O(shè)為圓心的圓弧AB上運動,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,其中x,y∈R,則x+y的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a≥2,f(x)=x3+3|x-a|,若函數(shù)f(x)在[-1,1]上的最大值和最小值分別記為M,m,則M-m的值為( 。
A.8B.-a3-3a+4C.4D.-a3+3a+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若直線l1:mx+y+2m-5=0與l2:3x+(m-2)y+1=0平行,則實數(shù)m的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.$\frac{{\sqrt{2}}}{3}π$B.$\frac{π}{2}$C.$\frac{{2\sqrt{2}}}{3}π$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題正確的是( 。
A.若ac>bc,則a>bB.若a>b,c>d,則ac>bd
C.若a>b,則$\frac{1}{a}<\frac{1}$D.若ac2>bc2,則a>b

查看答案和解析>>

同步練習冊答案