已知函數(shù)f(x)=x2-2ax+a2+1,x∈[0,1],若g(a)為f(x)最小值.
(1)求g(a);
(2)當g(a)=5時,求a的值.
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:(1)由條件利用二次函數(shù)的性質,分對稱軸在區(qū)間[0,1]的左側、中間、由側三種情況,分別求得函數(shù)的最小值.
(2)分當a<0時、當a>1時兩種情況,分別根據(jù)g(a)的解析式以及g(a)=5,求得a的值.
解答: 解:(1)由于函數(shù)f(x)=x2-2ax+a2+1=(x-a)2+1,x∈[0,1],
故當a<0時,f(x)的最小值g(a)=f(0)=a2+1;
當0≤a≤1時,f(x)的最小值g(a)=f(a)=1;
當a>1時,f(x)的最小值g(a)=f(1)=a2-2a+2.
綜上可得,g(a)=
a2+1,a<0
1,0≤a≤1
a2-2a+2,a>1

(2)當a<0時,由g(a)=5=a2+1,求得a=-2.
當a>1時,由a2-2a+2=5,求得a=3.
綜上可得,a=-2,或 a=3.
點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質的應用,體現(xiàn)了分類討論的數(shù)學思想,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC 中,已知邊c=10,A=45°,C=30°,求△ABC的邊a?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的極坐標方程是p=2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)),設直線與x軸的交點是M,N是曲線C上一動點,
(1)求曲線C與直線的普通方程;
(2)求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),其中a>0,且a≠1.
(1)判斷f(x)+g(x)的奇偶性,并證明;
(2)判斷f(x)-g(x)的單調性,并證明;
(3)設命題p:f(x)-g(x)為減函數(shù),命題q:x2+ax+2<0有解.若p或q為真,p且q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)已知圓C:x2+y2=1和點Q(2,0),動點M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0),求動點M的軌跡方程,并說明它表示什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為奇函數(shù),且當x>0時,f(x)=2x-1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=asinωx+bcosωx(ω>0)的周期T=π,最大值f(
π
12
)=4.
(1)求ω,a,b的值;
(2)若α,β為方程f(x)=0的兩根,α,β終邊不共線,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(m-1)x2+(-m+2)x-1>0,其中0<m<2
(1)解關于x的不等式;
(2)若x>1時,不等式恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠B=90°,SA⊥面ABC,AM⊥SC,AN⊥SB垂足分別為N、M,求證:AN⊥BC,MN⊥SC.

查看答案和解析>>

同步練習冊答案