11.已知點P在橢圓C1:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1上,點Q在橢圓C2:$\frac{{y}^{2}}{9}$+x2=1上,O為坐標原點,記ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,集合{(P,Q)|ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$},當ω取得最大值時,集合中符合條件的元素有幾個( 。
A.2個B.4個C.8個D.無數(shù)個

分析 由題意設P和Q的坐標,根據(jù)向量數(shù)量積的坐標運算及兩角和的余弦定理,根據(jù)余弦函數(shù)的性質(zhì),即可判斷集合中符合條件的元素個數(shù).

解答 解:P(6cosα,2sinα),α∈[0,2π),Q(cosβ,3sinβ),α∈[0,2π),
$\overrightarrow{OP}$=(6cosα,2sinα),$\overrightarrow{OQ}$=(cosβ,3sinβ),
由ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$=6cosαcosβ+6sinαsinβ=6cos(α-β),-2π<α-β<2π,
∴α-β=2kπ,
∴k=0,則α=β,
∴當P和Q共線時,ω取得最大值,
故這樣的點有無數(shù)個,
故選:D.

點評 本題考查橢圓的參數(shù)方程,向量數(shù)量積的坐標運算,兩角和的余弦公式,余弦函數(shù)的性質(zhì),考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.某市對創(chuàng)“市級示范性學!钡募、乙兩所學校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20位市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間[85,100]的為A等,在區(qū)間[70,85)的為B等,在區(qū)間[60,70)的為C等,在區(qū)間[0,60)為D等.
(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結(jié)論;
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求乙校得分的等級高于甲校得分的等級的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就.書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(單位:cm),則該陽馬的外接球的表面積為( 。
A.100π cm2B.$\frac{500π}{3}$ cm2C.400π cm2D.$\frac{4000π}{3}$ cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={x∈R|0<x≤5},B={x∈R|log2x<2},則(∁AB)∩Z=( 。
A.{4}B.{5}C.[4,5]D.{4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)).
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)若曲線C向左平移一個單位,再經(jīng)過伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=y}\end{array}}\right.$得到曲線C',設M(x,y)為曲線C'上任一點,求$\frac{x^2}{4}-\sqrt{3}xy-{y^2}$的最小值,并求相應點M的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在1907年的一項關于16艘輪船的研究中,船的噸位區(qū)間從192t~3246t,船員的人數(shù)從5人到32人,由船員人數(shù)關于噸位的回歸分析得到如下結(jié)果:$\widehat{y}$=9.5+0.0062x,假定的兩艘輪船的噸位相差1000t,船員平均人數(shù)相差6人,對于最小的船估計的船員人數(shù)是11人,對于最大的船估計的船員人數(shù)是31人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=(x+1)3當x=-1時( 。
A.有極大值B.有極小值
C.既無極大值,也無極小值D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}滿足:a1=2,當n∈N*,n>1時,a2+a3+…+an=4(an-1-1).
(Ⅰ)求a2,a3,并證明,數(shù)列{an+1-2an}為常數(shù)列;
(Ⅱ)設cn=$\frac{1}{2({a}_{n}+\frac{1}{{a}_{n}})+5}$,若對任意n∈N*,2a<c1+c2+…+cn<10a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知曲線${C_1}:\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以原點為極點,以x正半軸為極軸,建立極坐標系,曲線${C_2}:\frac{1}{ρ^2}=\frac{{{{cos}^2}θ}}{2}+{sin^2}θ$.
(Ⅰ)寫出曲線C1的普通方程,曲線C2的直角坐標方程;
(Ⅱ)若M(1,0),且曲線C1與曲線C2交于兩個不同的點A,B,求$\frac{|MA|•|MB|}{|AB|}$的值.

查看答案和解析>>

同步練習冊答案