已知f(2x+1)=
1
x
,那么f(5)=
 
考點(diǎn):函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的性質(zhì)求解.
解答: 解:∵f(2x+1)=
1
x

∴f(5)=f(2×2+1)=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x1、x2∈[0,+∞),x1≠x2,恒有
f(x2)-f(x1)
x2-x1
>0
成立,則以下結(jié)論正確的是(  )
A、f(2)>f(-1)>f(-3)
B、f(2)>f(-3)>f(-1)
C、f(-3)>f(2)>f(-1)
D、f(-3)>f(-1)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={0,1},B={a2,2a},定義:A×B={x|x=x1+x2,x1∈A,x2∈B},若集合A×B中元素的最大值為2a+1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|1≤2x<8},B={x|log2x≥1}.
(Ⅰ)求∁U(A∩B);
(Ⅱ)若集合C={x|2x+a<0},滿(mǎn)足B∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的實(shí)系數(shù)方程x2-ax+ab=0
(1)設(shè)x=1-
3
i是方程的根,求實(shí)數(shù)a、b的值;
(2)證明:當(dāng)
b
a
1
4
時(shí),該方程沒(méi)有實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題 p:?x∈R,x>2,那么命題¬p為(  )
A、?x∈R,x<2
B、?x∈R,x≤2
C、?x∈R,x≤2
D、?x∈R,x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>1,loga|x|<0,則x的取值范圍是(  )
A、(-∞,1)
B、(-∞,-1)∪(1,+∞)
C、(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+y2=r2截直線(xiàn)x+y-
2
2
=0所得的弦長(zhǎng)為
3
,拋物線(xiàn)C2:x2=2py(p>0)的焦點(diǎn)在圓C1上.
(1)求拋物線(xiàn)C2的方程;
(2)過(guò)點(diǎn)A(-1,0)的直線(xiàn)l與拋物線(xiàn)C2交于B,C兩點(diǎn),又分別過(guò)B,C兩點(diǎn)作拋物線(xiàn)C2的切線(xiàn),當(dāng)兩條切線(xiàn)互相垂直時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量x~n(5,4),φ(1)=0.8413,則P(3<X<7)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案