17.滿足cosαcosβ=$\frac{\sqrt{3}}{2}$-sinαsinβ的一組α,β的值是( 。
A.α=$\frac{13}{12}$π,β=$\frac{3π}{4}$B.α=$\frac{π}{2}$,β=$\frac{π}{6}$C.α=$\frac{π}{2}$,β=$\frac{π}{3}$D.α=$\frac{π}{3}$,β=$\frac{π}{4}$

分析 先將已知條件轉化成cosαcosβ+sinαsinβ=cos(α-β)=$\frac{\sqrt{3}}{2}$,再根據(jù)題中選項進行逐一驗證,可得答案.

解答 解:由已知得,cosαcosβ+sinαsinβ=$\frac{\sqrt{3}}{2}$,
∴cos(α-β)=$\frac{\sqrt{3}}{2}$,代入檢驗得α=$\frac{π}{2}$,β=$\frac{π}{3}$.
故選:C.

點評 本題主要考查兩角和與差的余弦公式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=x3-3x在[-1,2]上的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若c=acosB,b=asinC,則△ABC是(  )
A.等腰三角形B.等腰直角三角形C.直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=-x3+x2+bx+c,當x=$\frac{2}{3}$時,函數(shù)f(x)有極大值$\frac{4}{27}$.
(Ⅰ)求實數(shù)b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在菱形ABCD中,∠DAB=60°,E是AB的中點,MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=3.
(1)求證:AC⊥BN;
(2)求證:AN∥平面MEC;
(3)求二面角M-BC-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知偶函數(shù)f(x),當 x∈[0,2)時,f(x)=sinx,當 x∈[2,+∞)時,f(x)=log2x,則f(-$\frac{π}{3}$)+f(4)=( 。
A.$-\sqrt{3}+2$B.1C.3D.$\frac{\sqrt{3}}{2}+2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若(2+i)×(1-i)=a+bi,a,b∈R,則a+b=( 。
A.-2B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設A=[-1,1],B=[-2,2],函數(shù)f(x)=2x2+mx-1,
(1)設不等式f(x)≤0的解集為C,當C⊆(A∩B)時,求實數(shù)m的取值范圍;
(2)若對任意x∈R,都有f(1-x)=f(1+x)成立,試求x∈B時,函數(shù)f(x)的值域;
(3)設g(x)=2|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當PD=2AB,且E為PB的中點,求二面角B-AE-C的余弦值.

查看答案和解析>>

同步練習冊答案