對(duì)任意的x1,x2∈(0,
π
2
),x1<x2y1=
1+sinx1
x1
,y2=
1+sinx2
x2
;則(  )
A、y1>y2
B、y1<y2
C、y1=y2
D、無(wú)法確定
分析:先研究y=
1+sinx
x
x∈(0,
π
2
)
上的單調(diào)性,根據(jù)單調(diào)性的定義可判定y1,y2的大小關(guān)系.
解答:解:∵y=
1+sinx
x

y′=
xcosx-sinx-1
x2
x∈(0,
π
2
)
上y′<0
x∈(0,
π
2
)
上的單調(diào)遞減函數(shù),因x1<x2,所以y1>y2
故選A.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用數(shù)學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a2x
,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在正實(shí)數(shù)a,使對(duì)任意的x1,x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=loga(x2-ax+3)(a>0且a≠1),滿足對(duì)任意的x1.x2,當(dāng)x1<x2
a
2
時(shí),f(x1)-f(x2)>0,則實(shí)數(shù)a的取值范圍為( 。
A、(0,1)∪(1,3)
B、(1,3)
C、(0.1)∪(1,2
3
D、(1,2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)滿足:對(duì)任意的x1,x2∈R(x1≠x2),都有
f(x1)-f(x2)x1-x2
<0
成立,則f(-3)與f(-6)的大小關(guān)系
f(-3)<f(-6)
f(-3)<f(-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2tx+2,其中t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對(duì)任意的x∈[a,a+2],都有f(x)≤5,求實(shí)數(shù)a的取值范圍.
(3)若對(duì)任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①如果函數(shù)f(x)對(duì)任意的x∈R,都有f(1+x)=f(1-x),那么函數(shù)f(x)必是偶函數(shù);
②要得到函數(shù)y=sin(1-x)的圖象,只要將函數(shù)y=sin(-x)的圖象向右平移1個(gè)單位即可;
③如果函數(shù)f(x)對(duì)任意的x1、x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0,那么函數(shù)f(x)在R上是增函數(shù);
④函數(shù)y=f(x)和函數(shù)y=f(x-2)+1的圖象一定不能重合.其中真命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案