【題目】已知f(x)=x2﹣(m+ )x+1
(1)當m=2時,解不等式f(x)≤0
(2)若m>0,解關于x的不等式f(x)≥0.

【答案】
(1)解:m=2時,不等式化為(x﹣ )(x﹣2)≤0,

,

∴不等式的解集為{x| }


(2)解:由題意得f(x)=(x﹣m)(x﹣

當0<m<1時,m< ,不等式解集為{x|x≤m或x≥ }

當m=1時,m= ,不等式解集為R

當m>1時,m> ,不等式解集為{x|x≥m或x≤ }


【解析】(1)m=2時,不等式化為(x﹣ )(x﹣2)≤0,即可解不等式f(x)≤0(2)若m>0,分類討論解關于x的不等式f(x)≥0.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)和解一元二次不等式的相關知識點,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減;求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,左頂點、上頂點分別為A,B,△OAB的面積為3(點O為坐標原點).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動點,且 (λ<0),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O的方程為x2+y2=5.
(1)P是直線y= x﹣5上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,求證:直線CD過定點;
(2)若EF、GH為圓O的兩條互相垂直的弦,垂足為M(1,1),求四邊形EGFH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4. (Ⅰ) 若直線l過點A(2,3)且被圓C截得的弦長為2 ,求直線l的方程;
(Ⅱ) 若直線l過點B(1,0)與圓C相交于P,Q兩點,求△CPQ的面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為4萬元、3萬元,則該企業(yè)每天可獲得最大利潤為萬元

原料限額

A(噸)

2

5

10

B(噸)

6

3

18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB. (Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某青年教師有一專項課題是進行“學生數(shù)學成績與物理成績的關系”的研究,他調(diào)查了某中學高二年級800名學生上學期期末考試的數(shù)學和物理成績,把成績按優(yōu)秀和不優(yōu)秀分類得到的結(jié)果是:數(shù)學和物理都優(yōu)秀的有60人,數(shù)學成績優(yōu)秀但物理不優(yōu)秀的有140人,物理成績優(yōu)秀但數(shù)學不優(yōu)秀的有60人. 附:

P(K2≥k0

0.100

0.050

0.010

k0

6.635

7.879

10.828

K2=
(1)能否在犯錯概率不超過0.001的前提下認為該中學學生的數(shù)學成績與物理成績有關?
(2)將上述調(diào)查所得到的頻率視為概率,從全體高二年級學生成績中,有放回地隨機抽取4名學生的成績,記抽取的4份成績中數(shù)學、物理兩科成績恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

回歸方程為 =bx+a,其中b= ,a= ﹣b
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線y=kx+2交C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交C于點N. (Ⅰ)證明:拋物線C在點N處的切線與AB平行;
(Ⅱ)是否存在實數(shù)k使 ,若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案