分析:(1)先根據(jù)橢圓的方程求得c,進(jìn)而求得|F1F2|,設(shè)出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2的值,最后利用三角形面積公式求解.
(2)由對(duì)稱性不妨設(shè)Q在x軸上方,坐標(biāo)為(x0,y0),進(jìn)而可表示出tanA1QA2整理出關(guān)于x0和y0的關(guān)系式,同時(shí)把Q點(diǎn)代入橢圓方程,表示出y0進(jìn)而根據(jù)y0的范圍確定a和c的不等式關(guān)系,求得離心率的范圍.
解答:解:(1)∵|F
1F
2|=2c.
設(shè)|PF
1|=t
1,|PF
2|=t
2,
則根據(jù)橢圓的定義可得:t
1+t
2=2a①,
在△F
1PF
2中∠F
1PF
2=60°,
所以根據(jù)余弦定理可得:t
12+t
22-2t
1t
2•cos60°=4c
2②,
由①
2-②得t
1•t
2=
(4a
2-4c
2),
所以:
S△F1PF2=t1t2•sin60°=×(a 2-c 2)× =(a 2-c 2).
所以△F
1PF
2的面積
( a 2-c 2).
(2)由對(duì)稱性不防設(shè)Q在x軸上方,坐標(biāo)為(x
0,y
0),
則tanA
1QA
2=
=-
,即
=-整理得
=-
,①
∵Q在橢圓上,
∴
=a2(1-),代入①得y
0=
,
∵0<y
0≤b
∴0<
≤b,化簡(jiǎn)整理得3e
4+4e
2-4≥0,
解得
≤e<1.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握橢圓的標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單性質(zhì),以及熟練掌握解三角形的有關(guān)知識(shí),涉及了直線的斜率和基本不等式等知識(shí),難度不大但計(jì)算較繁瑣,考查了學(xué)生的運(yùn)算能力.