如圖所示的四邊形ABCD中,設
AB
=
a
,
AD
=
b
BC
=
c
,則用
a
b
,
c
表示
DC
=
 
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:由圖形可知結合向量的三角形法則得
DC
=
AC
-
AD
=
AB
+
BC
-
AD
解答: 解:
DC
=
AC
-
AD
=
AB
+
BC
-
AD
=
a
+
c
-
b
;
故答案為:
a
+
c
-
b
點評:本題考查了向量加減法的三角形法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=
i
1-i
,則z的實部為( 。
A、
1
4
B、
1
2
C、
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)畫出四棱錐P-ABCD的正視圖,(要求標出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:DM∥面PBC;
(3)求三棱錐D-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln
x
a
,若曲線y=f(x)在(1,f(1))處的切線為x-y-1=0,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)M,N,P三點滿足
MN
-
PN
+
PM
=0,則下列說法正確的是( 。
A、M,N,P是一個三角形的三個頂點
B、M,N,P是一個直線上的三個點
C、M,N,P是平面內(nèi)任意的三個點
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別為三個內(nèi)角∠A、∠B、∠C的對邊,已知b2+c2=a2+bc,若sin2A-sin(A-C)=sinB,求∠C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={1,a},集合B={1,3,a2},且對于?x∈A,都有x∈B,則實數(shù)a的取值個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(a-
1
a
n的展開式中僅有3項有理項,則n的取值可以是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=3sin2x的圖象向左平移φ(0<φ<
π
2
)個單位,所得圖象關于y軸對稱,求φ.

查看答案和解析>>

同步練習冊答案