17.[示范高中]定義在R上的偶函數(shù)f(x),其導函數(shù)為f′(x),當′x∈(-∞,0)時,都有$\frac{1}{x}$f(x)+f′(x)>0,若a=3f(3),b=(lnπ)f(lnπ),c=-2f(-2),則a,b,c的大小關系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

分析 構造函數(shù)g(x),求出g(x)的奇偶性和單調(diào)性,從而求出a,b,c的大小即可.

解答 解:令g(x)=xf(x),
g′(x)=f(x)+xf′(x),
∵x∈(-∞,0)時,都有$\frac{1}{x}$f(x)+f′(x)>0,
∴x∈(-∞,0)時,f(x)+xf′(x)<0,
∴′x∈(-∞,0)時,g′(x)<0,
g(x)在(-∞,0)遞減,
而g(-x)=-xf(-x)=-xf(x)=-g(x),
∴g(x)在R上是奇函數(shù),
∴g(x)在R遞減,
∵3>lnπ>-2,
∴g(3)<g(lnπ)<g(-2),
∴a<b<c,
故選:D.

點評 本題考查了函數(shù)的奇偶性和單調(diào)性問題,構造函數(shù)g(x)是解題的關鍵,本題是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.π為圓周率,e=2.71828…為自然對數(shù)的底數(shù).根據(jù)函數(shù)f(x)=$\frac{lnx}{x}$的單調(diào)性可得π3,3π,πe,eπ這四個數(shù)中的最大數(shù)為( 。
A.eπB.πeC.3πD.π3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.從某大學隨機抽取10名大學生,調(diào)查其家庭月收入與其每月上學的開支情況,獲得第i個家庭的月收入xi(單位:千元)與其每月上學的開支yi(單位:千元)的數(shù)據(jù)資料,算得:
$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.
(1)求其每月上學的開支y對月收入x的線性回歸方程$\widehat{y}$=bx+a;
(2)若某學生家庭月收入為7千元,預測該家庭每月支付其上學的費用,
附:線性回歸方程$\widehat{y}$=bx+a中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\widehat{y}$-b$\overline{x}$,其$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個根,求:
(Ⅰ)cosC的值;
(Ⅱ)△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)求(1+2x)5的展開式中含x3項的系數(shù);
(2)求(1+x)(1+$\frac{1}{x}$)5展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(b>a>0)與兩條平行線l1:y=x+a和l2:y=x-a的交點相連所得到的平行四邊形的面積為8b2,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{10}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.投籃測試中,每人投3次,至少投中2次才能通過測試,已知某同學每次投籃投中的概率為0.7,且各次投籃是否投中相互獨立,則該同學通過測試的概率為( 。
A.0.784B.0.648C.0.343D.0.441

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設復數(shù)z=a-i(a為正實數(shù),i為虛數(shù)單位),|z|=$\sqrt{2}$.
(1)求復數(shù)z;
(2)計算$\frac{\overline{z}}{z+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,三內(nèi)角A,B,C滿足2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1.
(I)求角C的值;
(Ⅱ)若AC=3,CB=1,$\overrightarrow{AD}$=3$\overrightarrow{DB}$,求CD的長.

查看答案和解析>>

同步練習冊答案