請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線BD交⊙O于點(diǎn)C,點(diǎn)G為中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F,連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:

【答案】分析:(1)連接AB,由圓周角定理,及G為中點(diǎn),可得∠GAD=∠FCE,∠CEF=∠ABC=90°,進(jìn)而得到△CEF∽△AGD,根據(jù)相似三角形對(duì)應(yīng)邊成比例,可得AG•EF=CE•GD;
(2)由(1)可得∠DFG=∠CFE=∠ADG,故△AGD∽△DGF,根據(jù)相似三角形對(duì)應(yīng)邊成比例,可得,進(jìn)而
解答:證明(1):已知AD為⊙M的直徑,連接AB,
則∠BCE=∠BAE,∠CEF=∠ABC=90°,
由點(diǎn)G為弧BD的中點(diǎn)可知∠GAD=∠BAE=∠FCE,
故△CEF∽△AGD,所以有,
即AG•EF=CE•GD.(5分)
(2)由(1)知∠DFG=∠CFE=∠ADG,
故△AGD∽△DGF,
所以,
.(10分)
點(diǎn)評(píng):本小題主要考查平面幾何中三角形相似的判定與性質(zhì),以及圓中角的性質(zhì)等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
12
x2-(1+a)x+alnx
,其中a>0.
(Ⅰ) 求函數(shù)f(x)的極小值點(diǎn);
(Ⅱ)若曲線y=f(x)在點(diǎn)A(m,f(m)),B(n,f(n))處的切線都與y軸垂直,問是否存在常數(shù)a,使函數(shù)y=f(x)在區(qū)間[m,n]上存在零點(diǎn)?如果存在,求a的值:如果不存在,請(qǐng)說明理由.
請(qǐng)考生在22,23,24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí)用2B鉛筆在答題卡把所選題目的題號(hào)涂黑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長(zhǎng)春一模)請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線BD交⊙O于點(diǎn)C,點(diǎn)G為
BD
中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F,連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆黑龍江省哈爾濱九中高三第二次模擬測(cè)試數(shù)學(xué)理卷 題型:解答題


選做題.(本小題滿分10分.請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí),用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的標(biāo)號(hào)涂黑.)
.在中,已知的角平分線,的外接圓交于點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末文科數(shù)學(xué) 題型:解答題

選考題(本小題滿分10分)(請(qǐng)考生在22,23,24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時(shí)用2B鉛筆在答題卡把所選題目的題號(hào)涂黑)

22、(本小題滿分10分)選修4-1幾何證明選講

如圖,D,E分別是AB,AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根,

(1)   證明 C,B,D,E四點(diǎn)共圓;

(2)   若,求C,B,D,E四點(diǎn)所在圓的半徑。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省雞西市高三第五次月考數(shù)學(xué)理卷 題型:解答題

選做題.(本題滿分10分.請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí),用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的標(biāo)號(hào)涂黑.)

修4—1:平面幾何

如圖,Δ是內(nèi)接于⊙O,,直線切⊙O于點(diǎn),,相交于點(diǎn).

(1)求證:Δ≌Δ;

(2)若,求

 

查看答案和解析>>

同步練習(xí)冊(cè)答案