18.已知函數(shù)f(x)=asinx+bcosx滿足f(x+$\frac{2π}{3}$)=f(-x)對x∈R恒成立,則要得到g(x)=2sin2x的圖象,只需把f(x)的圖象( 。
A.向右平移$\frac{π}{6}$,橫坐標縮短為原來的$\frac{1}{2}$
B.向右平移$\frac{π}{6}$,橫坐標伸長為原來的2倍
C.向右平移$\frac{π}{3}$,橫坐標縮短為原來的$\frac{1}{2}$
D.向右平移$\frac{π}{3}$,橫坐標伸長為原來的2倍

分析 由題意根據(jù)正弦函數(shù)的圖象的對稱性,求得a的值,可得f(x)=2sin(x+$\frac{π}{6}$),再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:∵函數(shù)f(x)=asinx+bcosx滿足f(x+$\frac{2π}{3}$)=f(-x)對x∈R恒成立,∴函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,
∴f(0)=f($\frac{2π}{3}$) 即 b=$\frac{\sqrt{3}}{2}$a-$\frac{1}{2}$b,求得b=$\frac{\sqrt{3}}{3}$a,f(x)=asinx+$\frac{\sqrt{3}}{3}a$•cosx.
根據(jù)題意,2=$\sqrt{{a}^{2}+\frac{{a}^{2}}{3}}$,故可取 a=$\sqrt{3}$,f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$).
則要得到g(x)=2sin2x的圖象,只需把f(x)的圖象向右平移$\frac{π}{6}$,橫坐標縮短為原來的$\frac{1}{2}$ 即可,
故選:A.

點評 本題主要考查正弦函數(shù)的圖象的對稱性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點A(0,2)的圓與直線x-y-4=0相切于P(6,2),則圓的方程是(  )
A.(x-5)2+(y-3)2=18B.(x-5)2+(y-3)2=9C.(x-3)2+(y-5)2=18D.(x-3)2+(y-5)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={x|x2+x≤0,x∈R},則集合A∩Z中有2個元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(I)根據(jù)表中數(shù)據(jù),求回歸方程y=c+d$\sqrt{x}$;
(II)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費x=90時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線$\stackrel{∧}{v}$=α+βu的斜率和截距的最小二乘估計分別為:
$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=2sin($\frac{π}{2}$+x)cosx-$\sqrt{3}$(cosx-sinx)2
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將f(x)的圖象向右平移$\frac{π}{12}$個單位,再將圖象上所有點的橫坐標縮短到原來的$\frac{1}{2}$倍,得到函數(shù)y=g(x),求g($\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知XN(-1,σ2),若P(-3≤X≤-1)=0.4,則P(-3≤X≤1)=(  )
A.0.4B.0.8C.0.6D.無法計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{(x-1)^{2}}{2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>1時,f(x)<x-1
(3)若存在x0>1,當(dāng)x∈(1,x0)時,恒有f(x)>k(x-1)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,已知AB=3,BC=2,∠B=60°,則AC=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知(1+2i)2=a+bi(a,b∈R,i是虛數(shù)單位),則a+b=(  )
A.1B.-1C.-3D.4

查看答案和解析>>

同步練習(xí)冊答案