以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位.直角坐標系中A點坐標為(-1,0),則A點極坐標為
(1,π)
(1,π)
分析:先利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,將點(2,-2)的直角坐標,化成極坐標即可.
解答:解:∵點(-1,0)中
x=-1,y=0,
∴ρ=
x2+y2
=1,
tanθ=
y
x
=0,∴取θ=π.
∴點(-1,0)的極坐標為(1,π)
故答案為(1,π).
點評:本小題主要考查點的極坐標與直角坐標方程的互化,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為ρsin(θ-
π
3
)=6
,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題)以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知圓C的參數(shù)方程為
x=2cosα
y=2sinα
(α為參數(shù)),直線l的極坐標方程為ρsin(θ+
π
4
)=
2
,則直線l被圓C所截的弦長為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點為極點,x軸的非負半軸為極軸,并在兩種坐標系中取相同的長度單位,點M的極坐標是(4,
3
)
,則點M直角坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-4:坐標與參數(shù)方程) 
以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.
已知直線ι的極坐標方程為ρsin(θ-
π
3
)=6
,圓C的參數(shù)方程為
x=10cos θ
y=10sin θ
(θ為參數(shù)),求直線ι被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(注意:本小題為選做題,A,B兩題選做其中一題,若都做了,則按A題答案給分)
A.當x,y滿足條件|x-1|+|y+1|<1時,變量u=
x-1
y-2
的取值范圍是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線的極坐標方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于A,B兩點,則以線段AB為直徑的圓的面積為
2
2

查看答案和解析>>

同步練習冊答案