【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D為 ,求AP與平面PBC所成角的正弦值.

【答案】(Ⅰ)證明:∵AB=2,AD= ,∠DAB= , ∴BD= =1
∴AB2=AD2+BD2 , ∴AD⊥BD,∴BC⊥BD
∵PD⊥AD,PD⊥DC,∴PD⊥底面ABCD,∴PD⊥BC
又∵PD∩BD=D,∴BC⊥平面PBD;
(Ⅱ)解:由(1)所證,BC⊥平面PBD,所以∠PBD即為二面角P﹣BC﹣D的平面角,即∠PBD=
而BD=1,所以PD= ,
分別以DA、DB、DP為x軸、y軸、z軸建立空間直角坐標系,則A( ,0,0),B(0,1,0),C(﹣ ,1,0),P(0,0,
所以 =(﹣ ,0, ), =(﹣v,0,0), =(0,﹣1, ),
設(shè)平面PBC的法向量為 =(a,b,c),∴
可解得 =(0, ,1),
∴AP與平面PBC所成角的正弦值為sinθ=| |=

【解析】(Ⅰ)證明BC⊥BD,PD⊥BC,即可證明BC⊥平面PBD;(Ⅱ)確定∠PBD即為二面角P﹣BC﹣D的平面角,分別以DA、DB、DP為x軸、y軸、z軸建立空間直角坐標系,用坐標表示向量及平面PBC的法向量,利用向量的數(shù)量積公式,即可求得AP與平面PBC所成角的正弦值.
【考點精析】通過靈活運用直線與平面垂直的判定和空間角的異面直線所成的角,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]以平面直角坐標系原點為極點,x軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同長度單位,已知曲線的參數(shù)方程為,( 為參數(shù),且),曲線的極坐標方程為

(1)求的極坐標方程與的直角坐標方程;

(2))若P是上任意一點,過點P的直線于點M,N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】張老師開車上班,有路線①與路線②兩條路線可供選擇. 路線①:沿途有兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導(dǎo)致延誤時間2分鐘;若處遇紅燈或黃燈,則導(dǎo)致延誤時間3分鐘;若兩處都遇綠燈,則全程所花時間為20分鐘.

路線②:沿途有兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導(dǎo)致延誤時間8分鐘;若處遇紅燈或黃燈,則導(dǎo)致延誤時間5分鐘;若兩處都遇綠燈,則全程所花時間為15分鐘.

(1)若張老師選擇路線①,求他20分鐘能到校的概率;

(2)為使張老師日常上班途中所花時間較少,你建議張老師選擇哪條路線?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)解不等式f(x)< ;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,已知.

(1)求角的大小;

(2),且,求邊;

(3),求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實數(shù)a的取值范圍是(
A.(﹣∞,2]
B.
C.
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A. 與y=x+1
B.y=x與 (a>0且a≠1)
C. 與y=x﹣1
D.y=lgx與

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1 , a2 , …,an , …,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|< )的最小正周期是a1 , 且函數(shù)y=f(x)的圖象關(guān)于直線x= 對稱.
(Ⅰ)求函數(shù)y=f(x)表達式;
(Ⅱ)已知△ABC中三邊a,b,c對應(yīng)角A,B,C,a=4,b=4 ,∠A=30°,求f(B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

I,求函數(shù)的單調(diào)區(qū)間.

II若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.

III過坐標原點作曲線的切線,求切線的橫坐標.

查看答案和解析>>

同步練習冊答案