滿足不等式2x+1
18
的x的取值范圍為
(-4,+∞)
(-4,+∞)
分析:直接利用指數(shù)函數(shù)的單調(diào)性,化簡(jiǎn)不等式,求出x的范圍即可.
解答:解:因?yàn)閥=2x是單調(diào)增函數(shù),所以不等式2x+1
1
8
,
可得x+1>-3,解答x>-4.
所以不等式的解集為(-4,+∞),
故答案為:(-4,+∞).
點(diǎn)評(píng):本題考查指數(shù)函數(shù)的單調(diào)性,不等式的解法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|.

(1)畫出點(diǎn)(x,y)所在的平面區(qū)域,并在區(qū)域中標(biāo)出邊界所在直線的方程;
(2)設(shè)a>-1,在(1)所求的區(qū)域內(nèi),求函y-ax的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|

(1)作出點(diǎn)(x,y)所在的平面區(qū)域并求出x2+y2的取值范圍;
(2)設(shè)m>-1,在(1)所求的區(qū)域內(nèi),求Q=y-mx的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x、y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|.

(1)作出點(diǎn)(x,y)所在的平面區(qū)域
(2)設(shè)a>-1,在(1)所求的區(qū)域內(nèi),求函數(shù)f(x,y)=y-ax的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且滿足不等式22a+1>25a-2
(1)求實(shí)數(shù)a的取值范圍.  
(2)求不等式loga(3x+1)<loga(7-5x) 
(3)若函數(shù)y=loga(2x-1)在區(qū)間[1,3]有最小值為-2,求實(shí)數(shù)a值.

查看答案和解析>>

同步練習(xí)冊(cè)答案