甲乙兩名射手在一次射擊中的得分是兩個(gè)獨(dú)立的隨機(jī)變量X,Y,分布列為

(1)求a,b的值;

(2)計(jì)算X,Y的均值EX,EY與方差DX,DY;并分析甲,乙的技術(shù)狀況.(參考數(shù)據(jù):)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ,η,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ,η,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2
(1)求ξ,η的分布列
(2)求ξ,η的數(shù)學(xué)期望與方差,并以此比較甲、乙的射擊技術(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)  甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為,,,,乙射中10,9,8環(huán)的概率分別為,

(1)求的分布列;w.w.w.k.s.5.u.c.o.m    

(2)求的數(shù)學(xué)期望與方差,并以此比較甲、乙的射擊技術(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省中山市龍山中學(xué)高考數(shù)學(xué)綜合題(理科)(解析版) 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ,η,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2
(1)求ξ,η的分布列
(2)求ξ,η的數(shù)學(xué)期望與方差,并以此比較甲、乙的射擊技術(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省揭陽市高考數(shù)學(xué)一模試卷A(理科)(解析版) 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ,η,已知甲、乙兩名射手在每次射擊中擊中的環(huán)數(shù)均大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案