4.設(shè)函數(shù)f(x)=x3-$\frac{9}{2}$x2+6x-a.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)的圖象與x軸有三個交點,求實數(shù)a的取值范圍.

分析 (1)求出f′(x),解不等式f′(x)>0得出增區(qū)間,解不等式f′(x)<0得出減區(qū)間;
(2)求出f(x)的極值,令極大值大于0,極小值小于0解出a的范圍.

解答 解:(1)f′(x)=3x2-9x+6,
令f′(x)>0得3x2-9x+6>0,解得x<1或x>2,
令f′(x)<0得3x2-9x+6<0,解得1<x<2.
∴f(x)的增區(qū)間為(-∞,1),(2,+∞),減區(qū)間為(1,2).
(2)由(1)知 當x=1時,f(x)取得極大值f(1)=$\frac{5}{2}-a$;
當x=2時,f(x)取得極小值f(2)=2-a.
∵f(x)的圖象與x軸有三個交點.
∴$\left\{\begin{array}{l}{\frac{5}{2}-a>0}\\{2-a<0}\end{array}\right.$,解得:$2<a<\frac{5}{2}$.

點評 本題考查了函數(shù)單調(diào)性,極值與導(dǎo)數(shù)的關(guān)系,函數(shù)零點的個數(shù)判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點F作斜率為1的直線交橢圓于A,B兩點.若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{a}$=(3,-1)共線,則該橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=(1-sinx)2的導(dǎo)數(shù)是sin2x-2cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,則f(2017)等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]
①估計該校學(xué)生每周平均體育運動時間超過4小時的概率P;
②假設(shè)該校每個學(xué)生每周平均體育運動時間超過4小時的概率都為P,試求從中任選三人至少有一人每周平均體育運動時間超過4小時的概率
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
男生女生總計
每周平均體育運動時間不超過4小時453075
每周平均體育運動時間超過4小時16560225
總計21090300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.自點(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線L所在直線與圓x2+y2-4x-4y+7=0相切,則反射光線L所在直線方程為4x-3y+3=0或3x-4y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列有關(guān)命題的說法正確的是( 。
A.“x2=1”是“x=1”的充分不必要條件
B.“x=2時,x2-3x+2=0”的否命題為真命題
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC,A,B,C所對的邊分別為a,b,c,且acsinA<$\overrightarrow{BA}•\overrightarrow{BC}$,則( 。
A.△ABC是鈍角三角形B.△ABC是銳角三角形
C.△ABC是直角三角形D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,且,acosC=(2b-c)cosA
(1)求cosA的值;
(2)若a=6,b+c=8,求三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案