若曲線y=xlnx上點(diǎn)P處的切線平行于直線x-y+1=0,則點(diǎn)P的坐標(biāo)是
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:利用直線平行斜率相等求出切線的斜率,再利用導(dǎo)數(shù)在切點(diǎn)處的值是曲線的切線斜率求出切線斜率,列出方程即得.
解答: 解:∵切線與直線x-y+1=0平行,∴斜率為1,
∵y=xlnx,y'=1×lnx+x•
1
x
=1+lnx
∴y'(x0)=1
∴1+lnx0=1,∴x0=1,
∴切點(diǎn)為(1,0).
故答案為:(1,0).
點(diǎn)評(píng):此題主要考查導(dǎo)數(shù)的計(jì)算,以及利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-a)2+(y-a)2=1上有且只有兩點(diǎn)到原點(diǎn)的距離為1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),f(2)=0,若任給x1,x2∈(-∞,0),且x1≠x2,
f(x1)-f(x2)
x1-x2
<0
恒成立,則不等式x•f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C皆為銳角,且tanA=1,tanB=2,tanC=3,則A+B+C的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直接寫出答案:
(1)
532
=
 
;   (2)
4(-
1
2
)4
=
 
;   (3)(
8
27
 -
1
3
=
 

(4)log3
1
3
=
 
;   (5)log2
1
8
=
 
;    (6)ln
1
e2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
4-x2
1-x
的定義域?yàn)?div id="mqgm2ke" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為
x
3
+y=0,則此雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)
a+2i
i
=b+i(a,b∈R),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=2ax2(a≠0)的焦點(diǎn)是( 。
A、(
a
2
,0)
B、(
a
2
,0)或(-
a
2
,0)
C、(0,
1
8a
D、(0,
1
8a
)或(0,-
1
8a

查看答案和解析>>

同步練習(xí)冊(cè)答案