分析 利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的增區(qū)間求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答 解:∵函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$sin2x=sin2x+2$\sqrt{3}$•$\frac{1-cos2x}{2}$=sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$=2sin(2x-$\frac{π}{3}$)+$\sqrt{3}$,x∈R,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,故函數(shù)f(x)的單調(diào)遞增區(qū)間為為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故答案為:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z).
點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 樣本數(shù)據(jù)中x=0時(shí),一定有$y=\hat a$ | |
B. | x增加一個(gè)單位時(shí),y平均增加$\hat b$個(gè)單位 | |
C. | 樣本數(shù)據(jù)中x=0時(shí),可能有$y=\hat a$ | |
D. | 直線必經(jīng)過點(diǎn)$(\overline x,\overline y)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$ | B. | $\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$ | C. | $\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$ | D. | $\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 18 | C. | 20 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com