如圖,在△OAB中,
OA
=
e1
OB
=
e2
,M,N分別在OA,OB上,且
OM
=
1
3
e1
ON
=
1
2
e2
,AN與BM的交點(diǎn)為P,試用
e1
,
e2
表示
OP 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:利用
OP
=
OM
+
MP
=
ON
+
NP
,設(shè)參數(shù)λ,μ,利用平面向量基本定理得到參數(shù)的關(guān)系,求出參數(shù).
解答: 解:設(shè)
MP
MB
,
NP
NA
,則
OP
=
OM
+
MP
=
ON
+
NP
=
1
3
e1
+λ(
e2
-
1
3
e1
)=
1
3
(1-λ)
e1
e2
;
同理
OP
=
1
2
(1-μ)
e2
e1
,
e1
,
e2
不共線,
1
3
(1-λ)=μ
λ=
1
2
(1-μ)
,
解得μ=
1
5
,
OP
=
1
5
e1
+
2
5
e2
點(diǎn)評(píng):本題考查了向量共線定理和共面向量定理,考查了推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,點(diǎn)P(1,f(1))在函數(shù)y=f(x)的圖象上,過(guò)P點(diǎn)的切線方程為y=3x+1.
(1)若y=f(x)在x=-2時(shí)有極值,求f(x)的解析式;
(2)若函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍;
(3)在(1)的條件下是否存在實(shí)數(shù)m,使得不等式f(x)≥m在區(qū)間[-2,1]上恒成立,若存在,試求出m的最大值,若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知E,F(xiàn)分別為棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱B1C1,A1D1的中點(diǎn),問(wèn)在棱A1B1上是否有一點(diǎn)G,使得AG∥面FBED1,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,側(cè)面PAD與側(cè)面PAB都是以A為直角頂點(diǎn)的直角三角形,底面ABCD是直角梯形,AD∥BC,∠ABC=90°,AB=4,BC=3,AD=5,E是CD的中點(diǎn).
(Ⅰ)證明:平面PCD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a=2,向量
a
=sin(A-B),1),
b
=(1,sinB-sinC),且
a
b

(1)求角A;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)在[0,5)上為增函數(shù)且f(4-3m)>f(m),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩條直線l1:mx+8y+n=0和直線l2:2x+my-1=0;求滿足下列條件時(shí)相應(yīng)m,n的值:
(1)l1與l2相交于點(diǎn)A(m,-1);
(2)當(dāng)m>0,l1∥l2,且l1在x軸上的截距為1;
(3)l1⊥l2,且l1在y軸上的截距為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn滿足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)對(duì)①進(jìn)行因式分解并求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有
1
a1(a1+1)
+
1
a2(a2+1)
+…+
1
an(an+1)
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+1-an=2;數(shù)列{bn}滿足b1=1,bn+1-bn=2n-1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{
1
anan+1
}
{
an
bn
}
的前n項(xiàng)和Sn,Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案