已知f(x)=x-aex(a∈R,e為自然對(duì)數(shù)的底).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先求導(dǎo),分類(lèi)討論,當(dāng)a≤0,f'(x)>0恒成立,當(dāng)a>0,再根據(jù)導(dǎo)數(shù)即可判斷函數(shù)的單調(diào)性,
(2)分離參數(shù),構(gòu)造函數(shù)g(x)=
x
ex
-ex
,利用導(dǎo)數(shù)求出函數(shù)的最值即可.
解答: 解:(1)f'(x)=1-a•ex,…(2分)
當(dāng)a≤0時(shí),f'(x)>0,函數(shù)f(x)是(-∞,+∞)上的單調(diào)遞增;…(4分)
當(dāng)a>0時(shí),由f'(x)>0得x<-lna,
所以函數(shù)f(x)在(-∞,-lna)上的單調(diào)遞增,函數(shù)f(x)在(-lna,+∞)上的單調(diào)遞減;…(6分)
(2)f(x)≤e2x?a≥
x
ex
-ex

設(shè)g(x)=
x
ex
-ex
,
g′(x)=
1-e2x-x
ex
,…(8分)
當(dāng)x<0時(shí),1-e2x>0,g'(x)>0,g(x)在(-∞,0)上單調(diào)遞增,…(9分)
當(dāng)x>0時(shí),1-e2x<0,g'(x)<0,g(x)在(0,+∞)上單調(diào)遞減,…(10分)
所以g(x)max=g(0)=-1,所以a≥-1;…(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)法求函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的最值,函數(shù)的恒成立,是函數(shù)圖象和性質(zhì)及導(dǎo)數(shù)的綜合應(yīng)用,難度中檔
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c>0,若4a=6b=9c,則( 。
A、
1
a
+
1
b
+
1
c
=1
B、
1
a
+
2
b
+
1
c
=1
C、
1
a
+
1
c
=
2
b
D、
2
a
+
2
c
=
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,摩天輪上一點(diǎn)P在t時(shí)刻距離地面高度滿足y=Asin(ωt+φ)+b,φ∈
[-π,π],已知某摩天輪的半徑為50米,點(diǎn)O距地面的高度為60米,摩天輪
做勻速轉(zhuǎn)動(dòng),每3分鐘轉(zhuǎn)一圈,點(diǎn)P的起始位置在摩天輪的最低點(diǎn)處.
(1)根據(jù)條件寫(xiě)出y(米)關(guān)于t(分鐘)的解析式;
(2)在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面超過(guò)85米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-
1
2
x2+
a
2
x-
3
2

(Ⅰ)求f(x)在x=e處的切線方程;
(Ⅱ)在函數(shù)f(x)與g(x)的公共定義域內(nèi)f(x)的圖象始終在g(x)圖象的上方,求實(shí)數(shù)a的范圍;
(Ⅲ)是否存在實(shí)數(shù)s,t(0<s<t),使x∈[s,t]時(shí),函數(shù)h(x)=
2f(x)+3
x
+x-4圖象恒在x軸上方且值域?yàn)閇2lns,2lnt]?若存在,求出s,t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2
x
2
+sinx,求f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線kx-y+3=0與橢圓
x2
a2
+
y2
b2
=1有兩個(gè)公共點(diǎn),0<b<3.則直線k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列問(wèn)題不是解決問(wèn)題的算法的是( 。
A、方程x2-4x+3=0有兩個(gè)不等的實(shí)根
B、解一元一次方程的步驟是去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、化系數(shù)為1
C、從中山到北京先坐汽車(chē),再坐火車(chē)
D、解不等式ax+3>0時(shí),第一步移項(xiàng),第二步討論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)t∈R,m,n都是不為1的正數(shù),函數(shù)f(x)=mx+t•nx若m=2,n=
1
2
,且t≠0,請(qǐng)判斷函數(shù)y=f(x)的圖象是否具有對(duì)稱(chēng)性,如果具有,請(qǐng)求出對(duì)稱(chēng)軸方程或?qū)ΨQ(chēng)中心坐標(biāo);若不具有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從坐標(biāo)原點(diǎn)O作曲線y=lnx的切線OP(P為切點(diǎn)),再過(guò)切點(diǎn)P引切線的垂線L,L與y軸的交點(diǎn)為Q.
(Ⅰ)求點(diǎn)P及點(diǎn)Q的坐標(biāo);
(Ⅱ)證明:點(diǎn)P是曲線y=lnx上距離點(diǎn)Q最近的點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案