下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.
(1)若為的中點,求證:面;
(2)證明面.
(3)求該幾何體的體積.
(1)詳見解析;(2)詳見解析;(3)
解析試題分析:由三視圖可知底面是邊長為4的正方形,,,∥,且。(1)根據(jù)等腰三角形中線即為高線可證得,根據(jù),且為正方形可證得,即可證得,根據(jù)線面垂直的判定定理可得。(2)取的中點, 與的交點為,可證得四邊形平行四邊形,即可證得∥,根據(jù)線面平行的定義即可證得面。(3)用分割法求體積,即將此幾何體分割成以為頂點的一個四棱錐和一個三棱錐。
試題解析:解:(1)由幾何體的三視圖可知,底面是邊長為4的正方形,
而且,∥,,.
取的中點,如圖所示.
∵,∴,
又∵,∴面,
∴.又,
∴面. 5分
(2)如圖
取的中點, 與的交點為,
連結、,如圖所示.
∴,∥,∴,∥,
∴四邊形為平行四邊形,
∴∥,又面, ∴∥面,
∴面. 9分
(3). 13分
考點:1三視圖;2線面平行;3線面垂直;4棱錐的體積。
科目:高中數(shù)學 來源: 題型:解答題
在如圖所示的多面體中,已知正三棱柱ABCA1B1C1的所有棱長均為2,四邊形ABDC是菱形.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)求該多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個幾何體是由圓柱和三棱錐組合而成,點、、在圓的圓周上,其正(主)視圖、側(左)視圖的面積分別為10和12,如圖4所示,其中,,,.
(1)求證:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知一個四棱錐P-ABCD的三視圖(正視圖與側視圖為直角三角形,俯視圖是帶有一條對角線的正方形)如圖,E是側棱PC的中點.
(1)求四棱錐P-ABCD的體積;
(2)求證:平面APC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知梯形中,,,、分別是、上的點,,.沿將梯形翻折,使平面⊥平面(如圖).是的中點.
(1)當時,求證:⊥ ;
(2)當變化時,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,△PBC為正三角形,PA⊥底面ABCD,其三視圖如圖所示,俯視圖是直角梯形.
(1)求正視圖的面積;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com