A. | ($\sqrt{5}$-2):$\sqrt{5}$ | B. | 2:$\sqrt{5}$ | C. | 1:2$\sqrt{5}$ | D. | $\sqrt{5}$:(1+$\sqrt{5}$) |
分析 求出拋物線C的焦點F的坐標,從而得到AF的斜率k=2.過M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|.Rt△MPN中,根據(jù)tan∠NMP=k=2,從而得到|PN|=2|PM|,進而算出|MN|=$\sqrt{5}$|PM|,再求得|FN|=|MN|+|MF|=|MN|+|PM|=($\sqrt{5}+1$)|PM|,則答案可求.
解答 解:∵拋物線C:y2=4x的焦點為F(1,0),點A坐標為(0,-2),
∴拋物線的準線方程為l:x=-1,直線AF的斜率為k=2,
過M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|,
∵Rt△MPN中,tan∠NMP=k=2,
∴$\frac{|PN|}{|PM|}=2$,可得|PN|=2|PM|,
得|MN|=$\sqrt{|PN{|}^{2}+|PM{|}^{2}}=\sqrt{5}$|PM|,
而|FN|=|MN|+|MF|=|MN|+|PM|=($\sqrt{5}+1$)|PM|,
∴|MN|:|FN|=$\sqrt{5}$:(1+$\sqrt{5}$),
故選:D.
點評 本題給出拋物線方程和射線FA,求線段的比值.著重考查了直線的斜率、拋物線的定義、標準方程和簡單幾何性質(zhì)等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 既不充分也不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,-1)∪(3,+∞) | B. | (-3,-1)∪(2,+∞) | C. | (-3,+∞) | D. | (-∞,-3)(-1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{6}$ | B. | $\sqrt{7}$ | C. | 5$\sqrt{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為4,15,26,37,48的同學均被選出,則該班學生人數(shù)可能為55 | |
B. | “x<0”是“l(fā)n(x+1)<0”的必要不充分條件 | |
C. | “?x≥2,x2-3x+2≥0”的否定是?x<2,x2-3x+2<0 | |
D. | x<3是-1<x<3的必要不充分條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com