【題目】已知函數(shù).
(1)當(dāng)時(shí),求證: ;
(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn) ,
①求實(shí)數(shù)的取值范圍; ②求證: .
【答案】(1);(2)①; ②證明見(jiàn)解析
【解析】試題分析:(1)構(gòu)造函數(shù),利用函數(shù)增減性求證;(2)①只需函數(shù)的極小值小于0即可;②由①知,記,分析函數(shù)的增減性,可知單調(diào)遞減,所以,轉(zhuǎn)化為即可求證.
試題解析:
(1)記,則,在上,
即在上遞減,所以,即恒成立
記,則,在上,
即在上遞增,所以,即恒成立
①,定義域: ,則
易知在遞增,而,所以在上,
在遞減,在遞增, ,
要使函數(shù)有兩個(gè)零點(diǎn),則
故實(shí)數(shù)的取值范圍是
②由①知,記
當(dāng)時(shí),由①知: ,則
再由得,
,
故恒成立, 單調(diào)遞減
,即,而,
,所以,由題知, , 在遞增,所以,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如下等式: , , ,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)=(ax2+x﹣1)ex
(1)當(dāng)a<0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若a=﹣1,f(x)的圖象與g(x)= x3+ x2+m的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN= CA,求證:MN∥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,( ).
(1)討論函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)不同的零點(diǎn), ,求證: .
(參考數(shù)據(jù): 取, 取, 取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+1)在(0,+∞)上單調(diào)遞減;q:曲線y=x2+(2a﹣3)x+1與x軸交于不同的兩點(diǎn).如果p且q為假命題,p或q為真命題,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com