直線過點(diǎn)P(2,2),且截圓x2+y2=4所得的弦長為2,求直線的斜率.
分析:設(shè)直線的斜率為k,用點(diǎn)斜式求得直線的方程,由題意可得圓心(0,0)到直線的距離等于
3
,即
|0-0+2-2k|
k2+1
=
3
,由此求得k的值.
解答:解:設(shè)直線的斜率為k,則直線的方程為 y-2=k(x-2),即kx-y+2-2k=0.
根據(jù)截圓x2+y2=4所得的弦長為2,半徑為2,由弦長公式可得圓心(0,0)到直線的距離等于
3

故圓心(0,0)到直線的距離
|0-0+2-2k|
k2+1
=
3

化簡可得 k2-8k+1=0,解得k=4+
15
,或k=4-
15
點(diǎn)評:本題主要考查直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式、弦長公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)P(-2,1),
(1)若直線l與直線x+y-1=0平行,求直線l的方程;
(2)若點(diǎn)A(-1,-2)到直線l的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(18分)已知直線過點(diǎn)P(2,3),并與軸正半軸交于A,B二點(diǎn)。

(1)當(dāng)AOB面積為時(shí),求直線的方程。

(2)求AOB面積的最小值,并寫出這時(shí)的直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線過點(diǎn)P(2,2),且截圓x2+y2=4所得的弦長為2,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省深圳市科學(xué)高中高一(上)期末數(shù)學(xué)試卷(實(shí)驗(yàn)、 榮譽(yù)體系)(解析版) 題型:解答題

直線過點(diǎn)P(2,2),且截圓x2+y2=4所得的弦長為2,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案