已知函數(shù)f(x)=sin(ωx-數(shù)學(xué)公式)+數(shù)學(xué)公式cos(ωx-數(shù)學(xué)公式)(ω>0),其圖象與x軸的一個交點到其鄰近一條對稱軸的距為數(shù)學(xué)公式
(1)求f(數(shù)學(xué)公式)的值;
(2)將函數(shù)f(x)的圖象向右平移數(shù)學(xué)公式個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到時原來的4倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,求[數(shù)學(xué)公式,2π]上的最大值和最小值.

解:(1)由題意函數(shù)f(x)=sin(ωx-)+cos(ωx-)(ω>0),
其圖象與x軸的一個交點到其鄰近一條對稱軸的距為
所以,可得T=π,∴ω=∴f(x)=sin(2x-)+cos(2x-)=2sin2x
所以f()=2sin=1
(2)將函數(shù)f(x)的圖象向右平移個單位后,得到y(tǒng)=2sin2(x-)=2sin(2x-);
再將得到的圖象上各點的橫坐標(biāo)伸長到時原來的4倍,得到y(tǒng)=2sin(2×x-)=2sin;
∴g(x)=2sin,
,∴



∴當(dāng)x=時,g(x)的最小值為:;當(dāng)x=時g(x)的最大值為2.
分析:(1)圖象與x軸的一個交點到其鄰近一條對稱軸的距為,推出函數(shù)的周期,利用函數(shù)的周期求出ω,化簡函數(shù)的表達(dá)式求出函數(shù)的解析式,然后求f()的值;
(2)將函數(shù)f(x)的圖象向右平移個單位,得到函數(shù)的解析式,再將得到的圖象上各點的橫坐標(biāo)伸長到時原來的4倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的解析式,分析[,2π]上,推出的范圍,然后求出函數(shù)的最大值和最小值.
點評:本題是中檔題,考查三角函數(shù)的解析式的求法,周期的應(yīng)用,三角函數(shù)的最值的求法,函數(shù)的平移變換,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案