分析 由題意設出M、N的坐標,聯(lián)立直線與圓的方程,利用根與系數(shù)的關系得到M、N的橫縱坐標的積,代入數(shù)量積的坐標運算得答案.
解答 解:設M(x1,y1),N(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{3x+4y+5=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,得25x2+30x-39=0.
則${x}_{1}+{x}_{2}=-\frac{30}{25},{x}_{1}{x}_{2}=-\frac{39}{25}$,
${y}_{1}{y}_{2}=\frac{15}{16}({x}_{1}+{x}_{2})+\frac{9}{16}{x}_{1}{x}_{2}+\frac{25}{16}$=$\frac{15}{16}×(-\frac{30}{25})+\frac{9}{16}×(-\frac{39}{25})+\frac{25}{16}$=$\frac{11}{25}$.
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=-\frac{39}{25}+\frac{11}{25}=-\frac{28}{25}$
故答案為:$-\frac{28}{25}$.
點評 本題考查直線與圓的位置關系,考查了平面向量的數(shù)量積運算,是基礎的計算題.
科目:高中數(shù)學 來源:2017屆安徽六安一中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:解答題
已知分別是的內(nèi)角所對的邊長,且,滿.
(1)求角的大;
(2)若點是外一點,,記,用含的三角函數(shù)式表示平面四邊形面積并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4和0 | B. | 4和1 | C. | $-\frac{4}{5}$和$\frac{8}{5}$ | D. | $\frac{8}{5}$和$-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {x|x≤0,或x>1} | C. | {x|0≤x<1} | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com