()(本小題滿分12分)已知數(shù)列的前項和為,,且

(Ⅰ)寫出的遞推關(guān)系式();

(Ⅱ)求關(guān)于的表達式;

(Ⅲ)設(shè),求數(shù)列的前項和

(Ⅰ)    (Ⅱ)   (Ⅲ)


解析:

法1:(Ⅰ)由

(Ⅱ)由

是首項為1,公差為1的等差數(shù)列,

(Ⅲ)∵

………………①

時,

時,;

………………②

由①-②得

綜上得。

解法二、

(Ⅰ)由

猜測。用數(shù)學歸納法證明如下:

(1)時,猜測成立;

(2)假設(shè)時,命題成立,即,則

,即,即時命題也成立。

綜合(1)、(2)知對于都有

所以,故。

(Ⅱ),證明見(Ⅰ)。

(Ⅲ)同法一。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知關(guān)于的一元二次函數(shù)  (Ⅰ)設(shè)集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為,求函數(shù)在區(qū)間[上是增函數(shù)的概率;(Ⅱ)設(shè)點(,)是區(qū)域內(nèi)的隨機點,求函數(shù)上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線段上且=.

(I)證明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案