(本小題滿分12分)函數(shù)f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對于函數(shù)圖像上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖像上存在點(diǎn)P(x0,y0)(其中x0在x1與x2之間),使得點(diǎn)P處的切線l平行于直線AB,則稱AB存在“伴隨切線”,當(dāng)x0= 時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖像上是否存在不同兩點(diǎn)A,B,使得AB存在“中值伴隨切線”?若存在,求出A,B的坐標(biāo);若不存在,說明理由
(1) 遞增區(qū)間是,遞減區(qū)間是(2)
【解析】(1)先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)知識求出函數(shù)的單調(diào)區(qū)間;(2)對于是否存在問題,先假設(shè)存在,把結(jié)論當(dāng)條件,構(gòu)造函數(shù),利用導(dǎo)數(shù)法得出函數(shù)的單調(diào)性,再利用單調(diào)性得出不等式,推出與已知條件矛盾,得出假設(shè)不成立
解:(1),
,
所以:遞增區(qū)間是,遞減區(qū)間是;………………………………………6分
(2)假設(shè)存在不同兩點(diǎn),(不妨設(shè)),使得存在“中值伴隨切線”,則,………………………………………7分
化簡得:,即,……………………………8分
設(shè)函數(shù),則,
當(dāng)時,,即在上是增函數(shù),………………………10分
又,所以,即,與上面結(jié)論矛盾,
所以在函數(shù)的圖像上是不存在不同兩點(diǎn),使得存在“中值伴隨切線”.12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com