【題目】如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.
(1)求平面與平面所成的銳二面角的大;
(2)若,且直線與平面所成角為,求的值.
【答案】(1);(2).
【解析】
(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;
(2)求出,利用計(jì)算即可.
(1)分別取的中點(diǎn)為,連結(jié).
因?yàn)?/span>∥,所以∥.
因?yàn)?/span>,所以.
因?yàn)閭?cè)面為等邊三角形,
所以
又因?yàn)槠矫?/span>平面,
平面平面,平面,
所以平面,
所以兩兩垂直.
以為空間坐標(biāo)系的原點(diǎn),分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,
因?yàn)?/span>,則,
,.
設(shè)平面的法向量為,則,即.
取,則,所以.
又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則
,
所以平面與平面所成的銳二面角的大小為.
(2)由(1)得,平面的法向量為,
所以成.
又直線與平面所成角為,
所以,即,
即,
化簡(jiǎn)得,所以,符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校隨機(jī)抽取100名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 總計(jì) | |
學(xué)習(xí)積極性高 | 40 | ||
學(xué)習(xí)積極性一般 | 30 | ||
總計(jì) | 100 |
已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到積極參加班級(jí)工作的學(xué)生的概率是0.6.
(1)請(qǐng)將上表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)?并說(shuō)明理由.附:
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊運(yùn)動(dòng)員在比賽前進(jìn)行三周的封閉訓(xùn)練,教練員將其每天成績(jī)的均值數(shù)據(jù)整理,并繪成條形圖如下,
根據(jù)該圖,下列說(shuō)法錯(cuò)誤的是:( )
A.第三周平均成績(jī)最好B.第一周平均成績(jī)比第二平均成績(jī)好
C.第一周成績(jī)波動(dòng)較大D.第三周成績(jī)比較穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幅招貼畫(huà)的示意圖,其中ABCD是邊長(zhǎng)為的正方形,周?chē)撬膫(gè)全等的弓形.已知O為正方形的中心,G為AD的中點(diǎn),點(diǎn)P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長(zhǎng)線交弧AD于點(diǎn)H.設(shè)弧AD的長(zhǎng)為,.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)定義比值為招貼畫(huà)的優(yōu)美系數(shù),當(dāng)優(yōu)美系數(shù)最大時(shí),招貼畫(huà)最優(yōu)美.證明:當(dāng)角滿足:時(shí),招貼畫(huà)最優(yōu)美.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R的奇函數(shù)滿足,且時(shí), ,下面四種說(shuō)法①;②函數(shù)在[-6,-2]上是增函數(shù);③函數(shù)關(guān)于直線對(duì)稱;④若,則關(guān)于的方程在[-8,8]上所有根之和為-8,其中正確的序號(hào)__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若散點(diǎn)圖中的樣本點(diǎn)散布在從左下角到右上角的區(qū)域,則散點(diǎn)圖中的兩個(gè)變量的相關(guān)關(guān)系為負(fù)相關(guān)
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,的值越小,說(shuō)明模型的擬合效果越好
D.線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春季,某出租汽車(chē)公司決定更換一批新的小汽車(chē)以代替原來(lái)報(bào)廢的出租車(chē),現(xiàn)有兩款車(chē)型,根據(jù)以往這兩種出租車(chē)車(chē)型的數(shù)據(jù),得到兩款出租車(chē)車(chē)型使用壽命頻數(shù)表如下:
使用壽命年數(shù) | 5年 | 6年 | 7年 | 8年 | 總計(jì) |
型出租車(chē)(輛) | 10 | 20 | 45 | 25 | 100 |
型出租車(chē)(輛) | 15 | 35 | 40 | 10 | 100 |
(1)填寫(xiě)下表,并判斷是否有的把握認(rèn)為出租車(chē)的使用壽命年數(shù)與汽車(chē)車(chē)型有關(guān)?
使用壽命不高于年 | 使用壽命不低于年 | 總計(jì) | |
型 | |||
型 | |||
總計(jì) |
(2)司機(jī)師傅小李準(zhǔn)備在一輛開(kāi)了年的型車(chē)和一輛開(kāi)了年的型車(chē)中選擇,為了盡最大可能實(shí)現(xiàn)年內(nèi)(含年)不換車(chē),試通過(guò)計(jì)算說(shuō)明,他應(yīng)如何選擇.
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)坐標(biāo)為
(1)求拋物線方程;
(2)過(guò)直線上一點(diǎn)作拋物線的切線切點(diǎn)為A,B
①設(shè)直線PA、AB、PB的斜率分別為,求證:成等差數(shù)列;
②若以切點(diǎn)B為圓心r為半徑的圓與拋物線C交于D,E兩點(diǎn)且D,E關(guān)于直線AB對(duì)稱,求點(diǎn)P橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車(chē)從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車(chē)獨(dú)立地從甲地到乙地,求這2輛車(chē)共遇到1個(gè)紅燈的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com