【題目】已知橢圓的離心率為, 為焦點(diǎn)是的拋物線上一點(diǎn), 為直線上任一點(diǎn), 分別為橢圓的上,下頂點(diǎn),且三點(diǎn)的連線可以構(gòu)成三角形.
(1)求橢圓的方程;
(2)直線與橢圓的另一交點(diǎn)分別交于點(diǎn),求證:直線過(guò)定點(diǎn).
【答案】(1) ;(2)見(jiàn)解析.
【解析】試題分析: (1)由已知列出方程組,解出a,b,c的值,求出橢圓的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線HA與橢圓方程,得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系得出D點(diǎn)坐標(biāo),同理求出E點(diǎn)坐標(biāo),代入直線方程并化簡(jiǎn),即可求出定點(diǎn).
試題解析:
(1)由題意知, ,解得,
∴橢圓的方程為.
(2)設(shè)點(diǎn),易知,
∴直線的方程為,直線的方程為.
聯(lián)立,得,∴,
冋理可得,
∴直線的斜率為,
∴直線的方程為,即,
∴直線過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車(chē)在饒城的大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車(chē)。為了研究廣大市民在共享單車(chē)上的使用情況,某公司在我市隨機(jī)抽取了100名用戶(hù)進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認(rèn)為每周使用超過(guò)3次的用戶(hù)為“喜歡騎行共享單車(chē)”,請(qǐng)完成列表(見(jiàn)答題卡),并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車(chē)”與性別有關(guān)?
(2)每周騎行共享單車(chē)6次及6次以上的用戶(hù)稱(chēng)為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶(hù).
① 求抽取的4名用戶(hù)中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;
②為了鼓勵(lì)女性用戶(hù)使用共享單車(chē),對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四個(gè)正方體中,是正方體的一條體對(duì)角線,點(diǎn)分別為其所在棱的中點(diǎn),能得出平面的圖形為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列滿(mǎn)足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)直播是一種新興的網(wǎng)絡(luò)社交方式,網(wǎng)絡(luò)直播平臺(tái)也成為了一種嶄新的社交媒體.很多人選擇在快手、抖音等網(wǎng)絡(luò)直播平臺(tái)上分享自己的生活點(diǎn)滴.2020年的寒假,注定不凡.因?yàn)樾鹿诓《疽咔榈挠绊,開(kāi)學(xué)延遲了,老師們停課不停教,在網(wǎng)絡(luò)上直播授課;同學(xué)們停課不停學(xué),在家上網(wǎng)課.某網(wǎng)絡(luò)社交平臺(tái)為了了解網(wǎng)絡(luò)直播在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問(wèn)題是“你直播過(guò)嗎?”其中,回答“直播過(guò)”的共有個(gè)人.把這個(gè)人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.
(1)求 和的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來(lái)自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點(diǎn).
(1)求證:平面平面;
(2)問(wèn)在棱上是否存在點(diǎn),使平面,若存在,請(qǐng)求出二面角的余弦值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交警隨機(jī)抽取了途徑某服務(wù)站的40輛小型轎車(chē)在經(jīng)過(guò)某區(qū)間路段的車(chē)速(單位: ),現(xiàn)將其分成六組為后得到如圖所示的頻率分布直方圖.
(1)某小型轎車(chē)途經(jīng)該路段,其速度在以上的概率是多少?
(2)若對(duì)車(chē)速在兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車(chē),求至少有一輛小型轎車(chē)速度在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1、2、3、4、5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
f | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件;求a、b、c的值.
(2)在(1)的條件下,將等級(jí)系數(shù)為4的3件記為x1、x2、x3,等級(jí)系數(shù)為5的2件記為y1、y2.現(xiàn)從這五件日用品中任取2件(假定每件日用品被取出的可能性相同),寫(xiě)出所有可能的結(jié)果,并求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com